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A B S T R A C T

We present a ray theory for modeling elastic wave propagation in spatially graded mechanical
metamaterials. Wave propagation in periodic metamaterials has been well studied, motivated
by their beneficial wave steering and bandgap properties. By contrast, comparably little work
has explored wave propagation in spatially graded metamaterials despite the increased design
opportunities, largely due to the lack of efficient modeling techniques. We develop a ray
theory to model waves in graded metamaterials based on high-frequency asymptotics and
the assumption of local periodicity. This work builds upon the well-developed ray theories
that are fundamental in a wide range of fields, from optics to seismology. Our derivations
produce a practical framework for computing approximate wave fields in graded metamaterials.
Ray trajectories are computed by independently solving a system of ordinary differential
equations for each ray, requiring only knowledge of local dispersion relations throughout the
metamaterial, which vary smoothly in space due to grading. Equations for the wave amplitude
along rays are also derived in the two-dimensional setting. We show that the form of the ray
tracing equations are nearly identical to those for smooth solids in seismic ray theory, with
the primary difference being the dispersion relations. A numerical framework for computing
ray solutions is demonstrated on a mass–spring network with analytical dispersion relations
as well as a truss metamaterial that requires the numerical evaluation of dispersion relations.
Through these examples, we demonstrate that ray theory provides an efficient means of studying
the fascinating behavior of waves in graded metamaterials such as wave guiding along curved
trajectories.

. Introduction

Periodic metamaterials exhibit fascinating wave propagation behavior due to their ability to steer and attenuate waves. The
xotic dynamic properties of periodic media were originally discovered in the context of atomic lattices, pioneered by the influential
orks of Bloch (1929) and Brillouin (1953). Subsequently, as manufacturing advances have allowed fabrication of metamaterials
ith detailed architectures, extensive research has focused on modeling and designing dynamic properties of periodic mechanical
etamaterials (Hussein et al., 2014; Phani and Hussein, 2017), based on the periodic assembly of a unit cell composed of trusses,
lates, shells, or composite materials. Of course, the design space of metamaterials extends far beyond periodic architectures. Graded
etamaterials, with spatially varying unit cells, can be easily manufactured, yet have remained largely unexplored in the context

f wave propagation.
For static applications, spatial grading of metamaterials has proven to be a powerful design concept to conceive materials and

tructures with locally optimal mechanical properties (Liu et al., 2017; Panesar et al., 2018; Sanders et al., 2021; Telgen et al., 2022).
dditionally, spatial grading enables enhanced wave guiding capabilities at long wavelengths (with respect to the unit cell length
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scale), which has been demonstrated for cloaking applications (Nassar et al., 2019; Kadic et al., 2020; Chen et al., 2021). However,
the extreme attenuation and directionality of energy flow, hallmark to metamaterials, typically occurs at short wavelengths on the
unit cell scale.

Past studies suggest graded metamaterials can be used to achieve wave propagation properties out of reach of periodic
etamaterials, such as broadband attenuation and lensing in both the one-dimensional (Chaplain et al., 2020b; Banerjee et al., 2017;
herednichenko, 2018; Alshaqaq et al., 2022) and two-dimensional settings (Trainiti et al., 2016, 2018; Aguzzi et al., 2022; Wang
t al., 2021; Chaplain et al., 2020a). The design space of graded metamaterials, however, remains largely unexplored in the context of
hort-wavelength wave propagation, as most existing research has relied on intuitive design. This is due to a lack of efficient modeling
ools to explore the design space. In the static and long-wavelength regimes, past work primarily relied on classical homogenization
echniques to efficiently model and design spatial grading in metamaterials, which break down for short wavelengths, though some
igh-frequency homogenization methods are capable of approximating dispersion relations about a given frequency (Craster et al.,
010; Nolde et al., 2011; Colquitt et al., 2015). Bloch wave analysis, which is the foundation for studying waves in periodic media,
elies on the assumption of periodicity and does not directly apply to graded architectures. Direct dynamic simulations (e.g., using
inite elements) require high spatial and temporal resolutions to resolve high frequency waves while capturing spatially varying unit
ells, which is inefficient for inverse design problems.

To address this gap in modeling capabilities, we develop ray theory as a tool for efficiently and accurately modeling wave
ropagation in spatially graded mechanical metamaterials. Ray theory is a classical approximation for wave propagation, originally
eveloped in the context of optics, where it is known as geometric optics (Born and Wolf, 2013), which was formalized by Hamilton
1828). Subsequently, it has emerged as a powerful tool for approximating wave propagation in a wide breadth of fields, from
uantum mechanics (Berry and Mount, 1972) to cosmology (Isaacson, 1968) to fluid mechanics (Jensen et al., 2011). Specifically
n solid mechanics, ray theory is most well known as a foundation for classical seismology (Cervenỳ, 2001; Chapman, 2004), dating

at least to the early 1900s (see, e.g., the review by Ben-Menahem, 1995). It has also provided a useful method for studying waves
in shells (Norris and Rebinsky, 1994; Mazzotti et al., 2022) and beams (Pierce, 1970).

There is a general procedure for developing ray theory in any context. First, an asymptotic analysis of the governing wave
equation is performed in the limit of high frequencies and short wavelengths; this is known as the eikonal approximation, Wentzel–
Kramers–Brillouin (WKB) approximation, or geometric optics approximation, depending on the field (Thorne and Blandford, 2017).
This approximation yields the eikonal equation, a partial differential equation that can be efficiently solved along characteristic
trajectories, or rays. A key feature of ray theory is its capability to efficiently approximate wave solutions in heterogeneous media,
which motivates its popularity in such a wide range of fields.

Despite the clear demonstration of ray theory as a powerful and mature tool across many fields, it has not yet been practically
applied in the context of mechanical metamaterials, though some research has applied ray tracing in the context of graded optical
metamaterials (Russell and Birks, 1996, 1999; Jiao et al., 2004; Cassan et al., 2011; Cassan and Do, 2011). Ray approximations
have also been developed for X-ray propagation through crystal lattices (Kato, 1963; Authier, 2004).

Building from the mathematical work of Bensoussan et al. (1978), Allaire et al. (2011), Schnitzer (2017) on asymptotic analysis of
Bloch waves, we develop a practical framework for ray tracing in graded metamaterials. We approximate the graded metamaterials
as locally periodic, with unit cells that change slowly in space. Ray tracing equations are derived, which consist of a system of
first-order ordinary differential equations that can be solved independently for each ray to calculate its trajectory. Additionally,
equations are derived to compute the wave amplitude along each ray, taking inspiration from analogous solutions in seismic ray
theory (Cervenỳ, 2001). This leads to an efficient framework for approximating wave solutions; ray paths are computed by solving
mall first-order differential equation systems, while amplitudes and phases along each ray are computed simply by evaluating their
erived formulas.

While we take inspiration from ray theories in optics and seismology, our work is distinct from these theories. In contrast to the
ptical case involving scalar waves, the elastic case we consider involves vector-valued displacement fields, which adds complexity.
eismic ray theory also studies elastic waves, but in the context of locally homogeneous solids, whereas we consider locally periodic

media that exhibit dispersion due to their microstructure. The assumptions of seismic ray theory are valid for wavelengths that are
much shorter than the length scale of inhomogeneity but much longer than the length scale of the microstructure. Our ray theory
for locally periodic media is a generalization of seismic ray theory, which is also valid for wavelengths on (and shorter than) the
length scale of the microstructure.

Based on the above theory, we implement a numerical ray tracing framework, which is demonstrated for a periodic and graded
mass–spring network as well as for a truss metamaterial modeled by beam finite elements. Results demonstrate close agreement
between the ray solutions and direct finite element simulations. Due to the efficiency of ray tracing, it is a promising tool for
exploring the design space of spatial grading. We anticipate that it will open doors to the inverse design of spatial grading for wave
manipulation, motivated by applications such as energy harvesting (De Ponti, 2021) and signal processing (Mohammadi and Adibi,
2011).

The remainder of this paper is organized as follows: Section 2 reviews elastic wave propagation in periodic media and defines the
assumptions of local periodicity. Section 3 derives ray theory for locally periodic media and outlines a numerical implementation.
Section 4 presents examples of ray solutions for a mass–spring network and a truss metamaterial in comparison to finite element
2

simulations. Finally, Section 5 concludes our study.
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2. Preliminaries

We consider small-amplitude elastic waves propagating in a continuum, which are described by the linear elastodynamic equation

𝜌𝑢̈𝑖 =
𝜕
𝜕𝑥𝑗

(

𝐶𝑖𝑗𝑘𝑙
𝜕𝑢𝑘
𝜕𝑥𝑙

)

, (1)

where the vector-valued displacement field 𝒖(𝒙, 𝑡) ∶  × R → R𝑑 is a function of the spatial coordinate 𝒙 ∈  and time 𝑡, defined
over a body  ⊂ R𝑑 in 𝑑 spatial dimensions. 𝜌(𝒙) denotes the (position-dependent) material density, and 𝑪(𝒙) is the fourth-order
elasticity tensor. Einstein’s summation convention is used throughout this paper.

2.1. Waves in periodic media

Elastic waves in periodic media have been well studied, which we briefly review here. For periodic media, the material properties
𝜌̂ and 𝑪̂ are periodic based on unit cell domain 𝛺. Within a unit cell, displacements are assumed to be plane waves of the form

𝒖(𝒙, 𝑡) = 𝑨̂𝑒i(𝒌⋅𝒙−𝜔𝑡), (2)

where i =
√

−1 is the imaginary number, 𝒌 ∈ R𝑑 is the wave vector, 𝜔 ∈ R is the frequency, and 𝑨̂ ∈ C𝑑 is the complex amplitude
vector, which is periodic with domain 𝛺. Generally, the wave vector can be complex, with its imaginary part associated with material
damping. However, for non-dissipative elastic materials, the imaginary part of the wave vector can be non-zero in the presence of
interfaces where evanescent waves form (Srivastava and Willis, 2017; Lustig et al., 2019). In the following, we consider linear elastic
materials with no material dissipation and we do not consider interfaces, so that 𝒌 is real throughout this paper.

The displacements within one unit cell can be directly related to the displacements in any other unit cell by Bloch’s theorem (Bril-
ouin, 1953), so only a single unit cell needs to be considered. To obtain the solution over one unit cell, the plane-wave ansatz of
q. (2) is inserted into Eq. (1) to obtain

𝐵[𝑨̂] + 𝜔2𝜌̂𝑨̂ = 𝟎, (3)

here the Bloch operator 𝐵 has components

𝐵𝑖 [𝑨̂] =
𝜕𝐶̂𝑖𝑗𝑘𝑙
𝜕𝑥𝑗

(

𝜕
𝜕𝑥𝑙

+ i𝑘𝑙
)

𝐴̂𝑘 + 𝐶̂𝑖𝑗𝑘𝑙

(

𝜕2

𝜕𝑥𝑙𝜕𝑥𝑗
+ i𝑘𝑗

𝜕
𝜕𝑥𝑙

+ i𝑘𝑙
𝜕
𝜕𝑥𝑗

− 𝑘𝑙𝑘𝑗

)

𝐴̂𝑘. (4)

Eq. (3) represents the operator form of the Bloch eigenvalue problem. A standard approach for solving the latter is by converting
Eq. (3) to the weak form, applying Bloch boundary conditions, discretizing using finite elements, and solving the resulting discrete
eigenvalue problem numerically. This procedure is discussed in depth in Hussein et al. (2014). The solution to the Bloch eigenvalue
problem yields the dispersion relation 𝜔(𝒌), which relates the natural frequencies 𝜔 to the wave vector 𝒌, and which provides valuable
information about the nature of wave propagation through the medium. The group velocity 𝑽 of a given mode takes the form

𝑽 = 𝜕𝜔
𝜕𝒌
, (5)

and the magnitude of the group velocity is denoted 𝑉 = ‖𝑽 ‖. As long as the wave vector is real, which is the case considered in
this paper, the group velocity determines the direction of energy flow (Willis, 2016) and is crucial to characterizing the dynamic
response of a periodic material (Zelhofer and Kochmann, 2017).

2.2. Definition of locally periodic media

Our objective is a framework for modeling elastic wave propagation in spatially graded metamaterials. Such materials are
assumed to be locally periodic, exhibiting unit cells that vary slowly in space. In the immediate vicinity of a unit cell, the medium is
effectively a periodic medium. However, the unit cell is allowed to vary slowly in space with respect to the unit cell length scale.

To formally define local periodicity, we introduce two length scales. The microscopic (unit cell) length scale is denoted 𝑙 ∼ 𝑂(𝜖),
and the macroscopic length scale is denoted 𝐿 ∼ 𝑂(1). The two length scales are assumed to be separated such that 𝑙∕𝐿 = 𝜖 ≪ 1.
Resulting from the separation of scales, two independent sets of spatial coordinates are defined. Coordinate 𝑿 = 𝒙 is associated with
the macroscopic scale of body , whereas coordinate 𝒚 = 𝒙∕𝜖 is associated with the microscopic scale of unit cell 𝛺. An illustration
of a locally periodic material is shown in Fig. 1, with the two coordinate systems highlighted.

In a locally periodic material, the unit cell is allowed to vary on the macroscopic length scale, but can be treated as approximately
periodic on the microscopic length scale. The material properties can hence be modeled as 𝒚-periodic with a small perturbation
associated with spatial variations on the macroscopic length scale, which take the form

𝑪(𝑿, 𝒚) = 𝑪̂(𝒚) + 𝜖2𝑪̃(𝑿, 𝒚),

𝜌(𝑿, 𝒚) = 𝜌̂(𝒚) + 𝜖2𝜌̃(𝑿, 𝒚).
(6)

Here, the elastic tensor and density consist of 𝒚-periodic terms 𝑪̂ and 𝜌̂, perturbed by non-periodic terms 𝑪̃ and 𝜌̃. In a periodic
medium the latter two would vanish. We carefully choose to consider small perturbations on the order of 𝜖2, which leads to the
3
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Fig. 1. Illustration of a spatially graded metamaterial, which is modeled as locally periodic with two length scales. The macroscopic coordinates 𝑿 are associated
with the length scale of spatial grading. The microscopic coordinates 𝒚 are associated with the length scale of the unit cell.

simplest possible ray approximation. Perturbations of order 𝜖 could be considered but would complicate the ray equations, as
discussed in Appendix A. Further discussion of the perturbation order can also be found in Allaire et al. (2011). Resulting from
the assumed form of material properties in Eq. (6), solutions to the elastodynamic equation are derived and exemplified in the
following.

3. Ray theory for locally periodic media

We proceed by developing ray theory for locally periodic elastic media. First, an asymptotic analysis of the elastodynamic wave
equation is performed under the assumption of local periodicity to derive the eikonal equation, which governs high frequency,
short-wavelength wave propagation. Solutions to the eikonal equation are obtained along rays. Ray trajectories are tangent to the
group velocity and represent directions of energy flow.

3.1. Asymptotic analysis

To formulate an asymptotic approximation of the elastodynamic equation for short wavelengths and high frequencies, we begin
with an ansatz for the displacements. Following the work of Bensoussan et al. (1978) and Allaire et al. (2011), the displacement
field in locally periodic media is assumed to take the form

𝒖(𝑿, 𝒚, 𝑡) = 𝑨(𝑿, 𝒚)𝑒i𝜑(𝑿,𝑡)∕𝜖 , (7)

which is analogous to the plane-wave ansatz of Eq. (2), except the amplitude and phase are allowed to slowly vary, so it represents
a ‘locally plane wave’. The phase 𝜑(𝑿, 𝑡) is assumed to vary only on the macroscopic length scale. Since this form of solution locally
approximates a plane wave, the partial derivatives of the phase give the wave vector and frequency, respectively:

𝒌 =
𝜕𝜑
𝜕𝑿

,

𝜔 = −
𝜕𝜑
𝜕𝑡
.

(8)

The amplitude 𝑨, like the material properties, is assumed to be approximately 𝒚-periodic (consisting of a periodic term plus a small
perturbation), so

𝑨(𝑿, 𝒚) = 𝑨̂(𝑿, 𝒚) + 𝜖2𝑨̃(𝑿, 𝒚). (9)

Here, 𝑨̂ is 𝒚-periodic, and 𝑨̃ is a non-periodic perturbation.
Inserting the displacement ansatz of Eq. (7) into the elastodynamic wave equation, Eq. (1), the leading order terms take the form

𝟎 = 𝜖−2𝑳𝑒i𝜑∕𝜖 + 𝜖−1𝑴𝑒i𝜑∕𝜖 + 𝑂(𝜖0), (10)

where the leading term involves vector 𝑳 with components

𝐿 = 𝐶̂ (−𝐴̂ 𝑘 𝑘 + i𝐴̂ 𝑘 + i𝐴̂ 𝑘 + 𝐴̂ ) + 𝐶̂ (𝐴̂ + i𝐴̂ 𝑘 ) + 𝜔2𝜌̂𝐴̂ (11)
4

𝑖 𝑖𝑗𝑘𝑙 𝑘 𝑗 𝑙 𝑘,𝑦𝑙 𝑗 𝑘,𝑦𝑗 𝑙 𝑘,𝑦𝑗𝑦𝑙 𝑖𝑗𝑘𝑙,𝑦𝑗 𝑘,𝑦𝑙 𝑘 𝑙 𝑖



Journal of the Mechanics and Physics of Solids 168 (2022) 105049C. Dorn and D.M. Kochmann

A
(

c
t
f

a
a
𝑴
t

3

T
𝜖
r
m
g

w
a

c
a

w
o

T
v
f

B
p
t
t

o

and the second term features

𝑀𝑖 = 𝐶̂𝑖𝑗𝑘𝑙(i𝐴̂𝑘,𝑋𝑗𝑘𝑙 + i𝐴̂𝑘,𝑋𝑙𝑘𝑗 + 𝐴̂𝑘,𝑋𝑗𝑦𝑙 + 𝐴̂𝑘,𝑋𝑙𝑦𝑗 + i𝐴̂𝑘𝑘𝑙,𝑋𝑗 ) + 𝐶̂𝑖𝑗𝑘𝑙,𝑦𝑗 𝐴̂𝑘,𝑋𝑙 . (12)

derivation of the two leading terms is presented in Appendix A. To avoid ambiguity, we employ the notation (),𝑦𝑖 = 𝜕()
𝜕𝑦𝑖

and
),𝑋𝑖 =

𝜕()
𝜕𝑋𝑖

, which is used from here on.
All terms of order 𝜖0 or smaller are neglected, which results in zeroth-order ray theory. More terms of the asymptotic expansion

an be accounted for to obtain higher-order theories. In seismology, higher-order ray approximations have been developed but, due
o the simplicity and accuracy of zeroth-order ray theory, higher-order ray approximations are often avoided (Cervenỳ, 2001). Thus,
ollowing the insights from seismic ray theory, we develop the analogous zeroth-order ray theory for locally periodic media.

From the asymptotic form of the elastodynamic equation, Eq. (10), the leading two terms are associated with different scales
nd must vanish independently. That is, 𝑳 = 𝟎 and 𝑴 = 𝟎 must both be satisfied. We first consider solutions to 𝑳 = 𝟎, which
llows for the computation of ray trajectories and the phase along those. Then, the amplitude along the rays results from solving
= 𝟎. Together, these first two asymptotic terms provide an elegant solution for both the amplitude and phase of waves along ray

rajectories.

.2. Ray tracing system

Using the definition of the Bloch operator of Eq. (4) in Eq. (11), enforcing 𝑳 = 𝟎 can be written as

𝐵[𝑨̂] + 𝜔2𝜌̂𝑨̂ = 𝟎. (13)

his is identical to the periodic Bloch eigenvalue problem in the limit 𝜖 → 0, so the periodic case is recovered. In the case of small
> 0 (i.e., in the locally periodic case), the dispersion relations are obtained at each point by assuming periodicity, but the dispersion

elations can vary with 𝑿. Furthermore, the analogous equation of seismic ray theory is recovered, if the unit cell is a homogeneous
aterial where 𝒚-derivatives in 𝐵 vanish. In this case, Eq. (13) reduces to the Christoffel equation, 𝐶̂𝑖𝑗𝑘𝑙𝑘𝑗𝑘𝑙𝐴̂𝑘 −𝜔2𝜌̂𝐴̂𝑖 = 0, which

overns seismic ray theory; see Section 2.4.3 of Cervenỳ (2001).
The resulting eigenvalues of the local Bloch eigenvalue problem in Eq. (13) take the form

𝜔𝑚 = 𝜔𝑚(𝒌,𝑿), (14)

here 𝑚 specifies the mode. This represents the local dispersion relation, relating wave vector 𝒌 to a set of natural frequencies 𝜔𝑚
t a given point 𝑿 ∈ .

Let us define the mode shape within the unit cell as 𝒈 ∶ 𝛺 → C𝑑 , which is generally complex-valued and the eigenfunction
orresponding to eigenvalue 𝜔 in the eigenvalue problem of Eq. (13). The mode shape captures the variation of the complex
mplitude through a given unit cell and varies only with 𝒚. We define the mode shapes as mass-normalized, such that

∫𝛺
𝜌̂ 𝒈∗𝒈 d𝒚 = 1, (15)

here ()∗ denotes the conjugate transpose. The reason we define the mode shapes as mass-normalized is to ensure a proper scaling
f the Green’s function introduced in Section 3.5, consistent with Langley (1996).

Using Eq. (8), the dispersion relation of Eq. (14) can be written as
𝜕𝜑
𝜕𝑡

+ 𝜔
(

𝜕𝜑
𝜕𝑿

,𝑿
)

= 0. (16)

This is known as the eikonal equation. Each mode has its respective eikonal equation, and we have dropped the index 𝑚 of the mode.
The eikonal equation can be solved along its characteristics, or rays, which are the solution of the ray tracing system, which takes
the form (Bleistein, 2012)

𝑑𝑿
𝑑𝑡

= 𝜕𝜔
𝜕𝒌

|

|

|

|𝑿
= 𝑽 , (17a)

𝑑𝒌
𝑑𝑡

= − 𝜕𝜔
𝜕𝑿

|

|

|

|𝒌
. (17b)

he first equation states that the group velocity is tangent to the ray, while the second equation describes the evolution of the wave
ector along the rays. Together, Eqs. (17a) and (17b) define a system of 2𝑑 (where 𝑑 is the number of spatial dimensions) coupled
irst-order ordinary differential equations that determine the ray paths and wave vectors along the ray paths.

The ray tracing system is identical to that found in ray theories of other fields, such as optics and seismology (Thorne and
landford, 2017), with the differences stemming only from the dispersion relations themselves (which are to be obtained at every
oint 𝑿 ∈  from application of Bloch’s theorem to the local unit cell). Additionally, the eikonal equation and its respective ray
racing system are structured identically to the Hamilton–Jacobi equations, with the dispersion relation acting as a Hamiltonian
hat determines the ray trajectory.

Once the ray path is known, the phase 𝜑 along the ray can be computed as follows. Since the phase is a function of 𝑿 and 𝑡
nly, the total derivative of the phase along the ray is

d𝜑
=
𝜕𝜑

+ 𝑽 ⋅
𝜕𝜑

= −𝜔 + 𝑽 ⋅ 𝒌. (18)
5

d𝑡 𝜕𝑡 𝜕𝑿
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This equation can be integrated using the solution of the ray tracing system in Eqs. (17), which provides the wave vector along the
ray, at which the group velocity can be evaluated. Additionally, the frequency 𝜔 along a ray is constant as long as the dispersion
relation is time-invariant (Thorne and Blandford, 2017), which is generally the case for elastic media.

3.3. Transport equation

To determine the wave amplitude along a ray, we follow the work of Bensoussan et al. (1978) and Allaire et al. (2011) and
express the complex amplitude of a given mode as

𝑨̂(𝑿, 𝒚) = 𝑎(𝑿)𝒈(𝒚), (19)

here 𝑎 ∈ C is the amplitude of the mode, which varies on the macroscale with 𝑿 ∈ .
The modal amplitude 𝑎 along a ray is determined from the second leading term in the asymptotic expansion of Eq. (10), which

ust vanish (𝑴 = 𝟎). Our derivation follows a similar path to that used in seismic ray theory (Cervenỳ, 2001), which begins by
omputing the scalar product

𝑀𝑖𝑔𝑖 = 𝐶̂𝑖𝑗𝑘𝑙
(

i𝑎,𝑋𝑗 𝑔𝑘𝑘𝑙 + i𝑎,𝑋𝑙𝑔𝑘𝑘𝑗 + 𝑎,𝑋𝑗 𝑔𝑘,𝑦𝑙 + 𝑎,𝑋𝑙𝑔𝑘,𝑦𝑗
)

𝑔𝑖 + 𝐶̂𝑖𝑗𝑘𝑙,𝑦𝑗 𝑎,𝑋𝑙𝑔𝑘𝑔𝑖 + i𝐶̂𝑖𝑗𝑘𝑙𝑘𝑙,𝑋𝑗 𝑎𝑔𝑘𝑔𝑖 = 0. (20)

tilizing the symmetry of the elasticity tensor, 𝐶̂𝑖𝑗𝑘𝑙 = 𝐶̂𝑘𝑙𝑖𝑗 , this becomes

𝑎,𝑋𝑙
[

(

𝐶̂𝑖𝑗𝑘𝑙𝑔𝑖𝑔𝑘
)

,𝑦𝑗
+ 2i𝑘𝑗 𝐶̂𝑖𝑗𝑘𝑙𝑔𝑖𝑔𝑘

]

+ i𝑎𝐶̂𝑖𝑗𝑘𝑙𝑘𝑗,𝑋𝑙𝑔𝑖𝑔𝑘 = 0. (21)

nserting Eq. (B.4) for group velocity (derived in Appendix B) leads to the significantly simplified equation

𝑎,𝑋𝑙2𝜌̂𝜔𝑉𝑙 + 𝑎(𝜌̂𝜔𝑉𝑙),𝑋𝑙 = 0. (22)

Finally, after multiplying both sides by 𝑎 and noting that 𝜔 is constant along a ray, we arrive at

(𝑎2𝜌̂𝑉𝑙),𝑋𝑙 = 0. (23)

This is known as the transport equation. It governs how the amplitude 𝑎 of a given mode evolves along a ray. This is identical to the
transport equation in seismic ray theory (Cervenỳ, 2001). If a homogeneous unit cell is considered, seismic ray theory is recovered,
since the group velocity in Eq. (B.4) reduces to the analogous group velocity for a locally homogeneous material. Since our transport
equation takes the same form as in seismic ray theory, the well-developed procedures from the seismology literature can be used
to solve the transport equation for ray amplitudes, which is presented in the following sections.

3.4. Solving for ray amplitudes

We solve the transport equation by considering the geometry of adjacent rays. While the derivations in previous sections are
general to the three-dimensional (3D) setting, we restrict the remainder of this paper to the two-dimensional (2D) setting to simplify
the computation of ray amplitudes. In addition, we consider the fundamental case of a point-source excitation and derive the
amplitude and phase of the resulting waves along rays emanating from the point source.

Towards solving the transport equation, we introduce the ray parameter 𝛾, which specifies a given ray based on its initial
conditions. There is not a unique way to specify 𝛾. For example, 𝛾 could represent the takeoff angle of the ray from a point source,
or alternatively the angle of the initial wave vector. For the sake of consistency, we refer to 𝛾 as the takeoff angle from the point
source. The ray path can be specified in the coordinate system (𝛾, 𝑠), where 𝑠 is the arc length along the ray, as well as in Cartesian
coordinates (𝑋1, 𝑋2). The ray Jacobian 𝐽 between the two coordinate systems is defined as

𝐽 = det
⎡

⎢

⎢

⎣

𝜕𝑋1
𝜕𝛾

𝜕𝑋1
𝜕𝑠

𝜕𝑋2
𝜕𝛾

𝜕𝑋2
𝜕𝑠

⎤

⎥

⎥

⎦

. (24)

The transport equation is solved by examining a ray tube, which is illustrated in Fig. 2. A ray tube is the area enclosed by two
djacent rays with takeoff angles 𝛾 and 𝛾 + d𝛾 from a point source, between arc lengths 𝑠𝑟 and 𝑠. The cross-sections of the ray tube
re segments of length d𝓁⟂

𝑟 at 𝑠𝑟 and d𝓁⟂ at 𝑠, which are measured perpendicular to the ray. The area enclosed by the ray tube is
enoted .

The ray cross-section is related to the Jacobian by (Cervenỳ, 2001)

d𝓁⟂ = 𝐽d𝛾. (25)

ince this identity only concerns the geometry of the ray tube, it applies to rays in both seismic media and locally periodic media.
To solve the transport equation, Eq. (23) is integrated over the area of the ray tube and the divergence theorem is applied, which

eads to

div𝑿
(

𝑎2𝑽
)

d = 𝑎2𝑽 ⋅ 𝒏d𝓁 = 0, (26)
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w
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f

p

Fig. 2. Schematic of a two-dimensional ray tube. A ray emanating from a point source at the origin with takeoff angle 𝛾 is shown alongside a neighboring ray
with takeoff angle 𝛾 + d𝛾.

here 𝜕 is the boundary of the ray tube and 𝒏 is the outward unit normal along the boundary. Since the group velocity 𝑽 is
tangent to the ray, the only contributions to Eq. (26) are integrals along d𝓁⟂ and d𝓁⟂

𝑟 , so Eq. (26) simplifies to

∫d𝓁⟂𝑟

(

𝑎2𝑽 ⋅ 𝒏
)

𝑠𝑟
d𝓁 + ∫d𝓁⟂

(

𝑎2𝑽 ⋅ 𝒏
)

𝑠 d𝓁 = 0. (27)

This integral can be simplified further since the group velocity is parallel to 𝒏 along the cross-section, so that 𝑽 ⋅ 𝒏 = 𝑉 along d𝓁⟂

and 𝑽 ⋅ 𝒏 = −𝑉 along d𝓁⟂
𝑟 . Eq. (26) now becomes

− ∫d𝓁⟂𝑟

(

𝑎2𝑉
)

𝑠𝑟
d𝓁 + ∫d𝓁⟂

(

𝑎2𝑉
)

𝑠 d𝓁 = 0. (28)

nserting Eq. (25) into Eq. (28), we obtain

∫

𝛾+d𝛾

𝛾

[

(𝑎2𝑉 𝐽 )𝑠 − (𝑎2𝑉 𝐽 )𝑠𝑟
]

d𝛾 = 0. (29)

Since there is freedom in how to specify 𝛾 (e.g., as the takeoff angle from a point source or as the 𝑋1-component of the wave vector),
the integrand of Eq. (29) must vanish, yielding

(𝑎2𝑉 𝐽 )𝑠 = (𝑎2𝑉 𝐽 )𝑠𝑟 . (30)

Alternatively, this can be written as a function of time, since 𝑠 can be taken as a function of time; both 𝑠 and 𝑡 monotonically increase
along a ray. Solving for 𝑎(𝑡) yields

𝑎(𝑡) = 𝑎(𝑡𝑟)

√

𝑉 (𝑡𝑟)𝐽 (𝑡𝑟)
𝑉 (𝑡)𝐽 (𝑡)

, (31)

which is known as the continuation formula. Given the ray amplitude at one location on a ray, Eq. (31) provides a simple relation
to the amplitude at any other point on the ray. Computation of 𝐽 is discussed in Section 3.6.

3.5. Ray amplitudes due to a point source

A fundamental and practical case that we consider is a harmonic point excitation. The continuation formula provides a means
of computing the amplitude along a ray, given some known reference value. However, using a point source as a reference requires
special treatment. At a point source, many rays intersect and therefore 𝐽 = 0. Thus, a point source is a singularity of ray theory.

This singularity can be circumvented by the following procedure, which follows a similar approach in the seismology litera-
ture (Kendall et al., 1992). First, we define the limit

𝜓0 = lim
𝑡→0+

𝑎(𝑡)
√

𝑉 (𝑡)𝐽 (𝑡), (32)

which is taken along a given ray. Using the point source as the reference (𝑡𝑟 = 0), the continuation formula, Eq. (31), can now be
written as

𝑎(𝑡) =
𝜓0

√

𝑉 (𝑡)𝐽 (𝑡)
. (33)

The value of 𝜓0 cannot be determined using ray theory alone. However, while the continuation formula is generally valid for spatially
varying media (since we assume local periodicity), the medium can be treated as periodic in the limit 𝑡0 → 0+. Therefore, the Green’s
unction for the case of an infinite 2D periodic medium is used to determine 𝜓0.

The frequency domain Green’s function for 2D periodic media, which is the response of an infinite periodic medium to a harmonic
oint excitation, was derived by Langley (1996). In our notation, the Green’s function 𝒖𝐺 takes the form

𝒖 (𝑿, 𝒚, 𝜔) = 𝑎 (𝑿)𝒈(𝒚)𝑒i(𝒌⋅𝑿−𝜔𝑡) (34)
7
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with complex amplitude

𝑎𝐺 =
i𝑭 𝑇 𝒈0

2𝜔
√

2𝜋|𝑍|

𝑒−i 𝜋4 sgn(𝑍). (35)

Here, 𝑭 ∈ R3 is a vector that provides the magnitude and direction of the harmonic force at the point source, and 𝒈0 = 𝒈(𝒚0) ∈ C3

is the mode shape evaluated at the point 𝒚0 ∈ 𝛺 in the unit cell, where the point force is applied. Note that, although we limit our
study to 2D spatially graded media, the applied force and resulting displacements are 3D in general (considering both in-plane and
out-of-plane motion). Quantity 𝑍 is defined as

𝑍 = 𝜕2𝜔
𝜕𝑘21

𝜕𝜔
𝜕𝑘2

𝑋2 −
𝜕2𝜔

𝜕𝑘1𝜕𝑘2

(

𝜕𝜔
𝜕𝑘1

𝑋2 +
𝜕𝜔
𝜕𝑘2

𝑋1

)

+ 𝜕2𝜔
𝜕𝑘22

𝜕𝜔
𝜕𝑘1

𝑋1. (36)

This Green’s function was derived under the asymptotic assumption of high frequencies and is hence valid in the far-field. While
Langley’s derivation includes a damping term in the Green’s function, in this derivation we neglect the contribution of damping.

With Green’s function in hand, the value of 𝜓0 can be determined. As the point source is approached, the ray amplitude of
Eq. (33) must be equal to the Green’s function amplitude of Eq. (35). Therefore,

𝜓0 =
i𝑭 𝑇 𝒈0

√

𝑉0𝐽0
2𝜔

√

2𝜋|𝑍0|
𝑒−i 𝜋4 sgn(𝑍0), (37)

where index (⋅)0 indicates that a quantity is evaluated in the limit 𝑡 → 0+, i.e., approaching the point source. Both 𝐽 and 𝑍 vanish
at the point source, but they vanish at the same rate so their quotient is a finite constant as the point source is approached. This
constant is derived in Appendix C, along with the signs of 𝐽0 and 𝑍0. The resulting form of 𝜓0 is

𝜓0 =
i𝑭 𝑇 𝒈0

√

sgn(𝐽0)
2𝜔

√

2𝜋𝑉0

‖

‖

‖

‖

𝜕𝒌
𝜕𝛾

‖

‖

‖

‖

1∕2

0
𝑒−i 𝜋4 sgn(𝑍0). (38)

Inserting this into Eq. (33), we obtain the final result for the amplitude along a ray emanating from a point source:

𝑎(𝑡) =
i𝑭 𝑇 𝒈0
2𝜔

( sgn(𝐽0∕𝐽 (𝑡))
2𝜋𝑉0𝑉 (𝑡)|𝐽 (𝑡)|

‖

‖

‖

‖

𝜕𝒌
𝜕𝛾

‖

‖

‖

‖0

)1∕2
𝑒−i 𝜋4 sgn(𝑍0). (39)

This equation provides a simple tool for computing the amplitude at any point along a ray. However, the amplitude is not valid
for the case of 𝐽 = 0, which corresponds to a caustic, which occurs when two adjacent rays intersect and the ray tube collapses
to a point. Caustics are a singularity of ray theory; the amplitude tends to infinity at a caustic, resulting from the violation of the
assumption that the amplitude varies slowly in space. Away from regions near a caustic (including point sources), however, Eq. (39)
provides an accurate approximation of the wave amplitude. Further discussion of caustics is presented in the context of the examples
in Section 4.

3.6. Numerical implementation

This section presents a numerical implementation of the ray theory equations to approximate the wave field. We specifically
consider the case of a harmonic excitation at frequency 𝜔𝑓 at a point source located at 𝑿0 = 𝟎 in a 2D locally periodic medium. The
objective of this numerical implementation is to obtain an approximation of the wave field that results from the harmonic excitation.

We assume that the dispersion relations 𝜔(𝒌,𝑿) are available throughout the domain either analytically (as is the case for the
examples in Section 4.1) or numerically (see the examples in Section 4.2). The implementation procedure is as follows:

1. Set the initial conditions 𝑿0 and 𝒌0 for the ray tracing equations. The initial position of each ray is 𝑿0 = 𝟎, the location of
the point source. The initial wave vector 𝒌0 of a ray must lie on the 𝜔𝑓 = 𝜔(𝒌0,𝑿0) level set of the dispersion relation at the
origin. Thus, for each mode whose dispersion surface intersects 𝜔 = 𝜔𝑓 , the possible values of 𝒌0 lie on the level set of the
forcing frequency. To initialize many rays, the level sets of the dispersion surfaces should be densely sampled.

2. For each set of initial conditions, solve the ray tracing system, Eqs. (17), which are a system of four first-order ordinary
differential equations. The solution provides the ray path 𝑿(𝑡) and the wave vector 𝒌(𝑡) along the ray path. Derivatives of
the dispersion relation can be computed using a finite-difference scheme, if no analytical form of the dispersion relations is
available.

3. Compute the phase 𝜑(𝑡) along each ray, using Eq. (18), where the frequency along the ray is 𝜔𝑓 and the group velocity and
wave vector result from the solution of the ray tracing system.

4. Compute the ray Jacobian along each ray. In our implementation, we employ a finite-difference scheme to compute 𝐽 , using
two adjacent rays. In the finite-difference context, Eq. (25) becomes

𝐽 = 𝛥𝓁⟂

𝛥𝛾
, (40)

where 𝛥𝓁⟂ is the length of the segment between two adjacent rays at arc length 𝑠, and 𝛥𝛾 is the difference in takeoff angle
between the two rays. The sign of 𝛥𝓁⟂ can be determined by taking the cross-product of the group velocity (which lies tangent
to the ray) and the vector connecting ray 𝛾 to ray 𝛾 + 𝛥𝛾 at the given arc length.
8
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5. Compute the amplitude along each ray. When inserting Eq. (40) and ‖

𝜕𝑘
𝜕𝛾 ‖ = ‖𝛥𝒌‖

|𝛥𝛾| into Eq. (39), the ray amplitude in the
context of finite differences is given by

𝑎(𝑡) =
i𝑭 𝑇 𝒈0

√

‖

‖

𝛥𝒌0‖‖ sgn(𝐽0∕𝐽 (𝑡))

2𝜔
√

2𝜋𝑉0𝑉 (𝑡)𝛥𝓁⟂(𝑡)
𝑒−i 𝜋4 sgn(𝑍0). (41)

This equation for the amplitude relies entirely on quantities known from the initial conditions or from the solution to the ray
tracing system, so it can be directly evaluated once the ray tracing system is solved. Note that this final equation for the ray
amplitude is independent of the ray parameter 𝛾.

6. Compute the total displacement at a point by summing the displacements of all rays passing through that point,

𝒖 =
𝑅
∑

𝑟=1
𝑎𝑟𝒈𝑟𝑒i𝜑𝑟 , (42)

where 𝑎𝑟, 𝜑𝑟, and 𝒈𝑟 are, respectively, the amplitude, phase, and mode shape along ray 𝑟, while 𝑅 represents the number of
rays passing through point 𝑿. Generally, the computed rays will not pass through the exact same points. To circumvent this,
we interpolate the quantities 𝑎𝑟, 𝒈𝑟, and 𝜑𝑟 onto a grid in the 𝑋1-𝑋2-plane, which allows for the summation to be taken at
each grid point.

This implementation provides a simple and efficient means of computing ray approximated wave fields, with the most expensive
step being the solution of the ray tracing system. Note that it is suitable for parallel implementation, since the ray tracing system
can be solved independently for each ray.

There are many possible alternative implementations of ray tracing, so the above procedure provides only one option. For
example, the ray tracing system could alternatively be solved as a boundary value problem, given the point source location and the
desired end point of the ray. Furthermore, instead of using finite differences, the calculation of the ray Jacobian can be cast into an
ODE system (known as the dynamic ray tracing system in seismology, see Cervenỳ (2001)). However, since the dispersion relations for
mechanical metamaterials generally require a numerical evaluation in the first place, finite-difference approximations of derivatives
are unavoidable, so we adopt the finite-difference Jacobian calculation of Eq. (40) for simplicity. Finally, while we only consider a
harmonic point excitation, more complex load cases can be considered by superposition of point sources with varying frequencies
and locations.

4. Results

4.1. Mass–spring network

The first example we present is a network of point masses connected by linear elastic springs. While being a simple toy model,
this example allows us to illustrate the above ray theory in an instructive manner. Consider a rectangular grid of particles of identical
masses, each connected to its neighbors in the horizontal and vertical directions as well as to the neighbors in the diagonal directions
(see Fig. 3). Each mass is allowed to move in-plane with two degrees of freedom, the displacements 𝑢1 and 𝑢2 in the 𝑋1- and 𝑋2-
directions, respectively. This mass–spring network offers a simple setting to demonstrate ray tracing since the dispersion relations
are analytical, yet it is complex enough to exhibit interesting dynamic behavior.

A unit cell consists of only a single mass, and there are two modes resulting from the two degrees of freedom. The equations of
motion along with analytical dispersion relations are derived in Appendix D. Within this general setup, we study a periodic geometry
in Section 4.1.1 and a spatially graded geometry in Section 4.1.2.

4.1.1. Periodic case
The periodic mass–spring network is shown in Fig. 3. In this example, the spacing between all masses in both the vertical and

horizontal directions is ℎ, leading to square unit cells. All springs have the same stiffness 𝐾 and all particles have mass 𝑚.
The corresponding dispersion relations are derived by examining one unit cell (a single mass) in Eq. (D.5), which are plotted in

Fig. 4 (normalized by the frequency scaling factor 𝜔0 =
√

𝐾∕𝑚). Resulting from the two degrees of freedom per unit cell, there are
two dispersion surfaces corresponding to the two modes of the unit cell.

To study the response of the network to harmonic excitation at the origin, a harmonic forcing is applied at frequency 𝜔𝑓 = 1.75𝜔0
in the 𝑋2-direction, so 𝑭 = (0, 1)𝖳 with unit magnitude. (Since the ray amplitudes scale linearly with the forcing magnitude, we
simply choose a unit magnitude without loss of generality.) As a reference for validation, we compute the direct numerical solution
to the equations of motion of Eq. (D.1) on a finite grid of 200 × 200 masses. A snapshot of the wave field at 𝑡 = 25∕𝜔𝑓 is shown in
Fig. 5c.

The first step in implementing ray tracing is to determine the initial conditions of the rays. This is achieved by taking a level
set of the dispersion relations at the forcing frequency, which is illustrated in Fig. 4 for both modes (see the solid lines, which are
projections of the level sets into the 𝜔 = 0 plane). All possible initial wave vectors lie on these level sets. To obtain initial conditions
for rays spanning all directions, we densely sample these level sets to provide initial conditions for 500 rays. The next step is to
solve the ray tracing system to obtain the ray trajectory and wave vector along the ray for each set of initial conditions, followed
9
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Fig. 3. Periodic mass–spring network with mass (𝑖, 𝑗) and its neighbors highlighted.

Fig. 4. Dispersion relations of the mass–spring network for the case of square unit cells with side lengths ℎ and identical masses and spring stiffness values
throughout the network.

The ray trajectories and amplitudes of both modes are plotted in Fig. 5 (in comparison to a snapshot of a discrete finite element
simulation). In this example, as is the case for any periodic architecture, all rays are straight lines. This follows from Eq. (17b),
since 𝜕𝜔

𝜕𝑿 = 0 in the periodic case; the wave vector is constant along the rays and therefore the group velocity, which is tangent to
the ray, is also constant. Also note that the ray trajectories are independent of the forcing magnitude and direction and only depend
on the forcing frequency 𝜔𝑓 . Only the amplitudes depend on the forcing 𝑭 through Eq. (39) (in a linear fashion).

An interesting feature of this example is that mode 1 exhibits multipathing : some directions exhibit multiple overlapping rays of
the same mode, which is explained as follows. In Fig. 5, nearly vertical and nearly horizontal directions exhibit multiple mode 1
rays. This phenomenon results from the shape of the dispersion surface level set in Fig. 4. The initial group velocity, which is the
initial ray direction, is the outward normal to this level set. Since the level set of mode 1 has a non-convex shape, there can be
multiple wave vectors on the level set with the same normal vector.

The displacement at a given point is obtained by summing the displacements of each ray passing through that point, according
to Eq. (42). For points at which two mode 1 rays pass through, both contribute to this summation. To carry out this summation,
the quantities 𝑎, 𝜑, and 𝒈, which are defined along each ray, are interpolated onto the coordinates of each mass.

Fig. 6 shows the maximum displacement amplitude at each point between 𝑡 = 0 and 𝑡 = 40∕𝜔𝑓 . Here, we extend the duration of
the simulation compared to Fig. 5 to allow more details of the wave field to evolve. In the direct numerical simulation, reflections of
mode 2 off the boundary of the grid have minimal effect since mode 2 has a very small amplitude. We do not model the boundary
reflections in the ray solution.
10
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Fig. 5. Solution for the periodic mass–spring network, evaluated at 𝑡 = 25∕𝜔𝑓 . (a) Mode 1 ray paths and amplitudes (corresponding to 𝜔1). (b) Mode 2 ray
paths and amplitudes (corresponding to 𝜔2). (c) Snapshot of the displacement magnitude at every point at time 𝑡 = 25∕𝜔𝑓 , as obtained from the direct numerical
solution.

Fig. 6. Comparison of wave amplitudes for the periodic mass–spring network. At each point, the maximum displacement amplitude between 𝑡 = 0 and 𝑡 = 40∕𝜔𝑓
is plotted for (a) the direct numerical solution and (b) the ray solution, where all rays passing through each point have been superimposed. (c) Maximum
amplitude along the 𝑋1-axis (at 𝑋2 = 0). (d) Maximum amplitude along the 𝑋2-axis (at 𝑋1 = 0).

The wave amplitudes in Fig. 6 show close agreement between the direct solution to the equations of motion and the ray solution.
Furthermore, an intricate interference pattern is observed, which results from the superposition of waves. The ray solution offers
insight into the source of these interference patterns. In the 𝑋1-direction, the interference pattern is caused by superposition of
overlapping mode 1 rays; it appears even when mode 2 is neglected in the summation of Eq. (42). In the 𝑋2-direction, by contrast,
the interference pattern is caused by superposition of mode 1 and mode 2 rays.

4.1.2. Graded case
To demonstrate ray tracing in a graded architecture, we modify the mass–spring network to have spatially varying unit cell

dimensions. In this example, the unit cell width ℎ and height ℎ are varied linearly in space according to the functions ℎ = 𝐶𝑋 +ℎ
11
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Fig. 7. Graded mass–spring network, with unit cell dimensions ℎ1 and ℎ2 graded linearly in space.

Fig. 8. Solution for the graded mass–spring network evaluated at 𝑡 = 40∕𝜔𝑓 . (a) Mode 1 ray paths and amplitudes. (b) Mode 2 ray paths and amplitudes. (c)
Snapshot of the displacement magnitude of the full numerical solution. Note that the scaling of (b) is extended to fit the rays of mode 2.

and ℎ2 = 𝐶𝑋2 + ℎ0. The grading rate is taken as 𝐶 = 0.005, and the resulting graded geometry is shown in Fig. 7. Following the
periodic example, a unit harmonic force at frequency 𝜔𝑓 = 1.75𝜔0 in the direction 𝑭 = (0, 1)𝖳 is applied at the origin, while all
springs have the same stiffness 𝐾, and all particles have mass 𝑚.

The initial conditions of the ray tracing system are identical to those of the periodic case. This is because the point excitation is
at the origin, which has a square unit cell so the local dispersion relations correspond to Fig. 4. In the ray tracing system, the spatial
derivative of the dispersion relations are obtained from the grading function as 𝜕𝜔

𝜕𝑋𝑖
= 𝐶 𝜕𝜔

𝜕ℎ𝑖
. Following the procedure of Section 3.6,

the ray trajectories and amplitudes are computed and plotted in Fig. 8.
Owing to the spatial grading, the ray paths here follow curved trajectories. The solution shows that, in the −𝑋1- and −𝑋2-

directions, the mode 1 rays spread out, while in the +𝑋1- and +𝑋2-directions the rays concentrate. For mode 1, the amplitude is
highest in the +𝑋1-direction, resulting in a strong one-way directivity of the wave.

For reference, a snapshot of the direct numerical solution to the equations of motion is plotted in Fig. 8c, which is computed on
a grid of 200 × 200 masses with a fixed boundary. Again, reflections of mode 2 off the boundary are present in the direct solution
at the snapshot considered, but since mode 2 has relatively small amplitude, these reflections have minimal effect on the amplitude
of the solution.

In Fig. 9, the maximum displacement amplitude obtained from summing the contributions of rays is plotted alongside the
maximum displacement magnitude during the direct simulation. There is a clear qualitative match between Figs. 9a and 9b.
However, while Fig. 9d reveals a close quantitative match along the 𝑋2-direction, Fig. 9c shows larger deviations between the
ray amplitude and the direct solution amplitude along the 𝑋1-direction. This reason for this discrepancy is the presence of caustics,
or the self-intersection of rays. At a caustic 𝐽 = 0, leading to a singularity in the amplitude of Eq. (39). This example features caustics
12
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Fig. 9. Comparison of wave amplitudes for the graded mass–spring network. At each point, the maximum displacement amplitude between 𝑡 = 0 and 𝑡 = 40∕𝜔𝑓
is plotted for (a) the direct numerical solution and (b) the ray solution, where all rays passing through each point have been superimposed. (c) Maximum
amplitude along the 𝑋1-axis. (d) Maximum amplitude along the 𝑋2-axis.

in the near-horizontal and near-vertical directions of mode 1, associated with the boundary of the region where two sets of mode 1
rays overlap. In Fig. 8a, the caustic curve intersects the 𝑋1- and 𝑋2-axes shortly after 𝑋1∕ℎ = 50. While this is a clear limitation of
ray theory, the ray amplitude remains valid away from caustics. Note that the ray trajectories are unaffected by caustics and remain
valid at caustic points.

4.2. Graded truss metamaterial

The final example demonstrates ray tracing in a graded truss metamaterial comprised of a network of beams, which is modeled
using a finite element description based on linear elastic 3D Timoshenko beam elements. While the use of finite elements creates
a physically realistic problem setting, the dispersion relations must be evaluated numerically, unlike in the previous mass–spring
network examples, which admitted analytical dispersion relations. Nevertheless, ray tracing can be performed based on numerically
evaluated dispersion relations.

We consider a truss with quadrilateral unit cells, as shown in Fig. 10. The angle 𝜙 of the unit cell is spatially graded according
to 𝜙 = 𝐷𝑋1∕ℎ with a grading rate of 𝐷 = 0.01. The resulting geometry has a square unit at 𝑋1 = 0 that grades into a parallelogram
with increasing angle away from 𝑋1 = 0. Each unit cell edge is a beam with a circular cross-section of diameter 0.1ℎ. An out-of-plane
harmonic excitation is applied to the origin.

The local dispersion relations (a different set of dispersion relations for each unit cell) are computed based on a finite element
model of a unit cell. Timoshenko beam elements are used with a density of 10 elements per unit cell edge. Bloch boundary conditions
are applied to the unit cell, and the dispersion relations are computed by solving an eigenvalue problem for a given wave vector
𝒌. A detailed discussion of dispersion relation computations for 2D truss networks was presented by, e.g., Zelhofer and Kochmann
(2017).

For ray tracing, the dispersion relations are needed for all unit cells present in the truss. To set up the ray tracing system,
dispersion relations are pre-computed over a grid in 𝒌-space covering the first Brillouin zone for a set of unit cell angles spanning
from 𝜙 = 0 to 𝜙 = 0.5, which is the range of angles present in Fig. 10.

The first three dispersion surfaces for 𝜙 = 0 corresponding to out-of-plane modes are plotted over the first Brillouin zone in
Fig. 11. Here, we nondimensionalize the frequency by defining 𝜔0 = ℎ−1

√

𝐸∕𝜌, where 𝐸 and 𝜌 are Young’s modulus and mass
density of the material that makes up the truss. As discussed in Zelhofer and Kochmann (2017), the lowest modes of planar beam
networks are completely decoupled into in-plane and out-of-plane modes. That is, out-of-plane excitation will only excite out-of-plane
13
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Fig. 10. Geometry of the graded beam network, with square unit cells at 𝑋1 = 0 grading into parallelograms away from 𝑋1 = 0, parameterized by the shear
angle 𝜙(𝑋1).

Fig. 11. Dispersion surfaces for the first three out-of-plane modes of the square unit cell at the excitation point 𝑋1 = 𝑋2 = 0. Ray tracing initial conditions
correspond to the level set at the excitation frequency. Level sets for three excitation frequencies are shown: (a) 𝜔 = 0.077𝜔0, (b) 𝜔 = 0.27𝜔0, and (c) 𝜔 = 0.44𝜔0.

modes and in-plane modes do not have to be considered. Initial conditions for ray tracing are obtained from the level sets of the
dispersion surfaces at the excitation frequency. We present results corresponding to three representative excitation frequencies. The
first excitation frequency is 𝜔 = 0.077𝜔0, which excites only mode 1, as shown in Fig. 11a. The second is 𝜔 = 0.27𝜔0, which excites
only mode 2, as shown in Fig. 11b. Finally, 𝜔 = 0.44𝜔0 excites modes 2 and 3, as shown in Fig. 11c.

From the pre-computed dispersion relations, finite differences are used to compute 𝜕𝜔
𝜕𝒌 and 𝜕𝜔

𝜕𝜙 , which are required for ray tracing.
The spatial grading constant is used to compute the spatial derivative of the dispersion relation as 𝜕𝜔

𝜕𝑋1
= 𝐷

ℎ
𝜕𝜔
𝜕𝜙 , while 𝜕𝜔

𝜕𝑋2
= 0. With

the finite-difference derivatives in hand, the ray tracing procedure is identical to the previous mass–spring examples, following
the steps of Section 3.6. Figs. 12a, 13a, 14a, and 14b show the resulting ray trajectories and amplitudes for the three excitation
frequencies.

To verify the ray solutions, a transient dynamic finite element simulation is performed on a 100 × 100 grid of units, which
corresponds to the domain plotted in Fig. 10. Each unit cell edge is modeled with 10 Timoshenko beam elements and the outer
boundaries of the grid are clamped. A harmonic displacement with magnitude 𝑢𝑓 is applied at the origin as an essential boundary
condition. We apply a displacement rather than a force excitation, because out-of-plane harmonic forcing on a two-dimensional
truss initially at rest may lead to a substantial transient response with parasitic low-frequency content. Displacement excitation, on
the other hand, leads to much smaller transients (Zelhofer and Kochmann, 2017). To obtain the resulting excitation force 𝑭 , which
is required for comparison to ray amplitudes through Eq. (41), the amplitude of the steady-state reaction force at the origin from
the finite element model is used.

Figs. 12, 13, and 14 show a comparison of the ray tracing and finite element solutions at each excitation frequency. In Figs. 12c,
13c, and 13d, the maximum displacement from ray theory is plotted, which has been interpolated onto the same points used in
the finite element mesh. In Figs. 12b, 13b, and 14c, the maximum displacement amplitude during the finite element simulation is
plotted. Finally, Figs. 12d, 13d, 14e compare the amplitudes along the 𝑋 -axis.
14
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Fig. 12. Ray theory and finite element (FE) solutions for the graded truss example with excitation frequency 𝜔𝑓 = 0.077𝜔0 at 𝑡 = 45∕𝜔𝑓 . (a) Mode 1 ray paths
and amplitudes. (b) Maximum displacement amplitude from the FE solution. (c) Maximum displacement amplitude from the ray solution. (d) Comparison of the
displacement amplitudes along the 𝑋2-axis (at 𝑋1 = 0).

Fig. 13. Ray theory and finite element (FE) solutions for the graded truss example with excitation frequency 𝜔𝑓 = 0.27𝜔0 at 𝑡 = 90∕𝜔𝑓 . (a) Mode 2 ray paths
and amplitudes. (b) Maximum displacement amplitude from the FE solution. (c) Maximum displacement amplitude from the ray solution. (d) Comparison of the
displacement amplitudes along the 𝑋2-axis (at 𝑋1 = 0).
15
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Fig. 14. Ray theory and finite element (FE) solutions for the graded truss example with excitation frequency 𝜔𝑓 = 0.44𝜔0 at 𝑡 = 100∕𝜔𝑓 . (a) Mode 2 ray paths
and amplitudes. (b) Mode 3 ray paths and amplitudes. (c) Maximum displacement amplitude from the FE solution. (d) Maximum displacement amplitude from
the ray solution. (e) Comparison of the displacement amplitudes along the 𝑋2-axis (at 𝑋1 = 0).

It is evident that the ray solution and the finite element solution closely agree, both in the location and shape of the wavefront as
well as the amplitude for all three examples. No caustics are present in the ray solution in any of the examples, so the ray amplitude
is valid everywhere except in the immediate vicinity of the point source. The oscillations in the amplitude observed in Figs. 12d and
13d are variations within each unit cell. The unit cell mode shape contributes to the displacement amplitude through Eq. (42), which
causes amplitude variations within each unit. In Fig. 14e, oscillations are present within each unit cell, but interference between
the two modes is also observed.

There are multiple reasons for the slight differences between the ray solution and finite element solution. In the finite element
simulation, the truss is initially at rest; when the wave first arrives at a given point, there is a transient build up to the steady-state
response. This is especially evident Fig. 12d near the wave front, where the finite element solution has not yet build up to steady
state, so it exhibits a lower amplitude than ray theory, which only captures the steady-state response. Another consequence of the
transient finite element analysis is that the harmonic displacement excitation is instantaneously switched on at 𝑡 = 0, so frequencies
other than the forcing frequency are inevitably excited. Finally, ray theory relies on the idealization of local periodicity, so the ray
solutions are not exact.

The solutions for the three excitation frequencies also give insight into the difference between seismic ray theory and our theory.
As discussed in Sections 3.2 and 3.3, seismic ray theory can be recovered by replacing unit cells with a homogenized effective
material. Classical homogenization is valid in the low-frequency and long-wavelength (with respect to a unit cell) limit (Gonella
and Ruzzene, 2008). In our example, only the first dispersion surface approaches the low-frequency limit. Therefore, seismic ray
theory could approximate the (only slightly anisotropic) response at 𝜔𝑓 = 0.077𝜔0 (Fig. 12), though the amplitude fluctuations
within a unit cell could not be captured. However, the dispersive effects of the microstructure, which lead to the highly directional
response in Figs. 13 and 14, corresponding to the second and third dispersion surfaces, cannot be captured by seismic ray theory,
since they correspond to frequencies above the limit of validity of homogenization.

5. Conclusion

Spatially graded metamaterials have high potential for manipulating wave propagation in unprecedented ways. However, there is
a lack of efficient modeling tools to explore the design space of graded metamaterials. To overcome this gap, we have developed ray
theory for graded metamaterials, which offers an efficient and accurate means of modeling wave propagation. To this end, we assume
local periodicity, so the material is considered to be periodic on a short length scale, while the unit cell is allowed to change on a
long length scale. Under this assumption, ray theory has been derived based on an asymptotic analysis of the elastodynamic wave
equation. Wave solutions are computed along ray trajectories that are obtained by solving a small first-order system of differential
equations. Subsequently, the phase and amplitude of the waves along a ray are derived, from which an approximation of the
displacement field can be obtained. Derivations of the ray solution parallel the well-established ray theory in seismology, though
there are subtle differences in the underlying assumptions and the resulting ray tracing equations.
16
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We demonstrated ray solutions on a series of examples. First, a mass–spring network with two modes was studied, for which
nalytical dispersion relations are available. In the periodic case, rays propagate along straight lines, while in the spatially graded
ase rays follow curved trajectories. Both the ray trajectories and amplitudes matched closely with the direct numerical solutions
or a finite grid of masses, with the exception of caustics where the ray amplitude is singular. The final example considered a truss
etamaterial modeled by beam finite elements. Such a model is physically realistic, at the cost of requiring the numerical evaluation

f dispersion relations. Nevertheless, ray solutions were obtained based on numerical differentiation of the dispersion relation and
ere shown to agree closely with discrete finite element simulations.

The theoretical and numerical framework presented here provides an efficient means of exploring the design space of spatially
raded metamaterials. There are many avenues for future research that can build upon this foundation. Due to its efficiency, ray
heory also serves as a powerful basis for solving inverse problems in other fields (Lo and Inderwiesen, 1994), which provides
nspiration for the inverse design of graded metamaterials.
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Appendix A. Derivation of leading-order asymptotics

This appendix derives the leading-order asymptotic terms of the elastodynamic wave equation, Eq. (1). We first modify the
elastodynamic wave equation to account for the two length scales of interest. Noting that 𝜕

𝜕𝒙 = 𝜕
𝜕𝑿 + 𝜖−1 𝜕

𝜕𝒚 , Eq. (1) becomes

𝜌𝑢̈𝑖 = (𝐶𝑖𝑗𝑘𝑙𝑢𝑘,𝑋𝑙 ),𝑋𝑗
⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟

=𝑆1

+ 𝜖−1(𝐶𝑖𝑗𝑘𝑙𝑢𝑘,𝑦𝑙 ),𝑋𝑗
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

=𝑆2

+ 𝜖−1(𝐶𝑖𝑗𝑘𝑙𝑢𝑘,𝑋𝑙 ),𝑦𝑗
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

=𝑆3

+ 𝜖−2(𝐶𝑖𝑗𝑘𝑙𝑢𝑘,𝑦𝑙 ),𝑦𝑗
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟

=𝑆4

. (A.1)

pon inserting the ansatz of Eq. (7) into Eq. (A.1), and applying the assumptions of local periodicity from Eqs. (6) and (9), the four
erms become

𝑆1 = 𝐶̂𝑖𝑗𝑘𝑙,𝑋𝑗 (𝐴𝑘,𝑋𝑙 + 𝜖
−1i𝐴𝑘𝑘𝑙)𝑒i𝜑∕𝜖 + 𝐶̂𝑖𝑗𝑘𝑙

[

(𝐴𝑘,𝑋𝑙 + 𝜖
−1i𝐴𝑘𝑘𝑙)𝜖−1i𝑘𝑗 + 𝐴𝑘,𝑋𝑗𝑋𝑙 + 𝐴𝑘,𝑋𝑗 𝜖

−1i𝑘𝑙 + 𝐴𝑘𝜖−1i𝑘𝑙,𝑋𝑗
]

𝑒i𝜑∕𝜖 + 𝑂(𝜖0)

= 𝜖−2(−𝐶̂𝑖𝑗𝑘𝑙𝐴̂𝑘𝑘𝑙𝑘𝑗 )𝑒i𝜑∕𝜖 + 𝜖−1i
[

𝐶̂𝑖𝑗𝑘𝑙(𝐴̂𝑘,𝑋𝑗𝑘𝑙 + 𝐴̂𝑘,𝑋𝑙𝑘𝑗 + 𝐴̂𝑘𝑘𝑙,𝑋𝑗 )
]

𝑒i𝜑∕𝜖 + 𝑂(𝜖0), (A.2)

𝑆2 = 𝜖−1𝐶̂𝑖𝑗𝑘𝑙,𝑋𝑗𝐴𝑘,𝑦𝑙 𝑒
i𝜑∕𝜖 + 𝜖−1𝐶̂𝑖𝑗𝑘𝑙(𝐴𝑘,𝑦𝑙𝑋𝑗 + 𝜖

−1i𝐴𝑘,𝑋𝑙𝑘𝑗 )𝑒
i𝜑∕𝜖 + 𝑂(𝜖0)

= 𝜖−2𝐶̂𝑖𝑗𝑘𝑙𝐴̂𝑘,𝑦𝑙 i𝑘𝑗𝑒
i𝜑∕𝜖 + 𝜖−1𝐶̂𝑖𝑗𝑘𝑙𝐴̂𝑘,𝑦𝑙𝑋𝑗 𝑒

i𝜑∕𝜖 + 𝑂(𝜖0), (A.3)

𝑆3 = 𝜖−1
[

𝐶̂𝑖𝑗𝑘𝑙,𝑦𝑗 (𝐴𝑘,𝑋𝑙 + 𝜖
−1i𝐴𝑘𝑘𝑙) + 𝐶̂𝑖𝑗𝑘𝑙(𝐴𝑘,𝑋𝑙𝑦𝑗 + 𝜖

−1i𝐴𝑘,𝑦𝑗𝑘𝑙)
]

𝑒i𝜑∕𝜖 + 𝑂(𝜖0)

= 𝜖−2i
(

𝐶̂𝑖𝑗𝑘𝑙,𝑦𝑗 𝐴̂𝑘𝑘𝑙 + 𝐶̂𝑖𝑗𝑘𝑙𝐴̂𝑘,𝑦𝑗𝑘𝑙
)

𝑒i𝜑∕𝜖 + 𝜖−1
(

𝐶̂𝑖𝑗𝑘𝑙,𝑦𝑗 𝐴̂𝑘,𝑋𝑙 + 𝐶̂𝑖𝑗𝑘𝑙𝐴̂𝑘,𝑋𝑙𝑦𝑗
)

𝑒i𝜑∕𝜖 + 𝑂(𝜖0), (A.4)

𝑆4 = 𝜖−2
(

𝐶𝑖𝑗𝑘𝑙,𝑦𝑗𝐴𝑘,𝑦𝑙 + 𝐶𝑖𝑗𝑘𝑙𝐴𝑘,𝑦𝑙𝑦𝑗
)

𝑒i𝜑∕𝜖

= 𝜖−2
(

𝐶̂𝑖𝑗𝑘𝑙,𝑦𝑗 𝐴̂𝑘,𝑦𝑙 + 𝐶̂𝑖𝑗𝑘𝑙𝐴̂𝑘,𝑦𝑙𝑦𝑗
)

𝑒i𝜑∕𝜖 + 𝑂(𝜖0). (A.5)

ollecting all terms of order 𝜖−2, we define the leading order term 𝑳 as

𝐿𝑖 = 𝐶̂𝑖𝑗𝑘𝑙(−𝐴̂𝑘𝑘𝑗𝑘𝑙 + i𝐴̂𝑘,𝑦𝑙𝑘𝑗 + i𝐴̂𝑘,𝑦𝑗𝑘𝑙 + 𝐴̂𝑘,𝑦𝑗𝑦𝑙 ) + 𝐶̂𝑖𝑗𝑘𝑙,𝑦𝑗 (𝐴̂𝑘,𝑦𝑙 + i𝐴̂𝑘𝑘𝑙) + 𝜔2𝜌̂𝐴̂𝑖. (A.6)

Similarly, collecting all terms of order 𝜖−1, we define the second leading term 𝑴 as

𝑀 = 𝐶̂ (i𝐴̂ 𝑘 + i𝐴̂ 𝑘 + 𝐴̂ + 𝐴̂ + i𝐴̂ 𝑘 ) + 𝐶̂ 𝐴̂ . (A.7)
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These two leading terms define the asymptotic elastodynamic equation, Eq. (10), from which ray theory is derived. In 𝑳 and 𝑴 , only
the periodic parts of the amplitude, 𝑨̂, and the material properties, 𝑪̂ and 𝜌̂, are present due to our assumption that the non-periodic
perturbation terms in Eqs. (6) and (9) are of order 𝜖2. If perturbations of order 𝜖 were considered instead, then 𝑪̃, 𝜌̃, and 𝑨̃ would
appear in 𝑴 . By restricting the perturbations to order 𝜖2, the amplitude derivations of Sections Section 3.3, 3.4, and 3.5 take the
simplest possible form, while also providing accurate results, as demonstrated in Section 4.

Appendix B. An alternative expression for the group velocity

In this section, we use the leading order term of the asymptotic elastodynamic equation to derive an expression for the group
velocity, which is required for the derivation of the transport equation in Section 3.3. Differentiating Eq. (13) with respect to 𝑘𝑞 ,
we obtain

2𝜌̂𝜔 𝜕𝜔
𝜕𝑘𝑞

𝐴̂𝑖 = −i𝐶̂𝑖𝑗𝑘𝑙,𝑦𝑗 𝛿𝑞𝑙𝐴̂𝑘 − 𝐶̂𝑖𝑗𝑘𝑙
(

i𝛿𝑞𝑙𝐴̂𝑘,𝑦𝑗 + i𝛿𝑞𝑗𝐴̂𝑘,𝑦𝑙 − 𝑘𝑗𝛿𝑞𝑙𝐴̂𝑘 − 𝑘𝑙𝛿𝑞𝑗𝐴̂𝑘
)

, (B.1)

where 𝛿 is the Kronecker delta. By inserting the modal amplitude of Eq. (19) and the definition of the group velocity in Eq. (5), and
multiplying both sides of the equation by 𝑔𝑖, we arrive at

2𝜌̂𝜔𝑉𝑞𝑎𝑔𝑖𝑔𝑖 = −i𝐶̂𝑖𝑗𝑘𝑙,𝑦𝑗 𝛿𝑞𝑙𝑎𝑔𝑘𝑔𝑖 − 𝐶̂𝑖𝑗𝑘𝑙
(

i𝛿𝑞𝑙𝑎𝑔𝑘,𝑦𝑗 𝑔𝑖 + i𝛿𝑞𝑗𝑎𝑔𝑘,𝑦𝑙𝑔𝑖 − 𝑘𝑗𝛿𝑞𝑙𝑎𝑔𝑘𝑔𝑖 − 𝑘𝑙𝛿𝑞𝑗𝑎𝑔𝑘𝑔𝑖
)

. (B.2)

Note that, here, 𝑎 is a function of 𝑿 only, so its derivative with respect to 𝒚 vanishes. Dividing both sides by 𝑎 and utilizing the
symmetry of the elasticity tensor (𝐶̂𝑖𝑗𝑘𝑙 = 𝐶̂𝑘𝑙𝑖𝑗), the above becomes

2𝜌̂𝑔2𝜔𝑉𝑙 = −i(𝐶̂𝑖𝑗𝑘𝑙𝑔𝑖𝑔𝑘),𝑦𝑗 + 2𝐶̂𝑖𝑗𝑘𝑙𝑘𝑗𝑔𝑖𝑔𝑘, (B.3)

where 𝑔2 = 𝑔𝑖𝑔𝑖. Finally, by re-arranging, we arrive at the simple expression for the group velocity:

𝑉𝑙 = − i
2𝜌̂𝜔𝑔2

(𝐶̂𝑖𝑗𝑘𝑙𝑔𝑖𝑔𝑘),𝑦𝑗 +
1

𝜌̂𝜔𝑔2
𝐶̂𝑖𝑗𝑘𝑙𝑘𝑗𝑔𝑖𝑔𝑘. (B.4)

This result differs from the analogous identity in seismic ray theory for the group velocity in a ‘‘locally homogeneous" solid, which
is 𝑉 𝑠

𝑙 = 𝜌−1𝜔−1𝐶𝑖𝑗𝑘𝑙𝑘𝑗𝑔𝑖𝑔𝑘 (Cervenỳ, 2001). In Eq. (B.4) there is an additional term, highlighting the difference between locally
periodic material and a locally homogeneous material. Despite this difference, the ray tracing Eqs. (17) and transport Eq. (23) are
identical between locally periodic ray theory and seismic ray theory. However, one must be careful in comparing the two contexts.
Seismic ray theory relies on the commonly used identity 𝒌 ⋅ 𝑽 𝑠 = 𝜔, which does not apply to locally periodic material.

Appendix C. Derivation of the point source amplitude

The constant 𝜓0, which is originally defined in Eq. (32), is required for the computation of ray amplitudes due to a point
excitation. The form of 𝜓0 in Eq. (37) contains the quotient of 𝐽 and 𝑍, which both tend to zero as the point source is approached.
We show that 𝐽 and 𝑍 tend to zero at the same rate so that their quotient, as the point source is approached, is a finite constant.

The unit tangent vector of a ray is 𝜕𝑿
𝜕𝑠 = 𝑽 ∕𝑉 , which allows the definition of the ray Jacobian in Eq. (24) to be rewritten as

𝐽 =
𝜕𝑋𝑖
𝜕𝛾

𝜖𝑖𝑗𝑉
−1𝑉𝑗 , (C.1)

where 𝜖𝑖𝑗 is the 2D Levi-Civita symbol, which has components 𝜖12 = 1, 𝜖21 = −1, and 𝜖11 = 𝜖22 = 0. Differentiating Eq. (17a) with
espect to 𝛾 and noting that 𝜕𝜔

𝜕𝑿 is negligible in the limit as the point source is approached, we obtain

𝜕
𝜕𝛾
𝜕𝑋𝑖
𝜕𝑡

= 𝜕2𝜔
𝜕𝑘𝑖𝜕𝛾

(C.2)

r
𝜕
𝜕𝑡
𝜕𝑋𝑖
𝜕𝛾

= 𝜕2𝜔
𝜕𝑘𝑖𝜕𝑘𝑗

𝜕𝑘𝑗
𝜕𝛾

. (C.3)

or small values of 𝑡,
𝜕𝑋𝑖
𝜕𝛾

≈ 𝜕2𝜔
𝜕𝑘𝑖𝜕𝑘𝑗

𝜕𝑘𝑗
𝜕𝛾

𝑡. (C.4)

nserting Eq. (C.4) into Eq. (C.1), as the point source is approached along the ray, the Jacobian takes the form

𝐽0 = lim
𝑡→0+

𝐽 = lim
𝑡→0+

𝑡
𝑉0

𝜕2𝜔
𝜕𝑘𝑖𝜕𝑘𝑗

𝜕𝑘𝑗
𝜕𝛾

𝜖𝑖𝑘𝑉0𝑘. (C.5)

The corresponding sign of 𝐽0 as the point source is approached along the ray, since 𝑡 is positive, is

sgn(𝐽0) = sgn
(

𝜕2𝜔 |

|

|

𝜕𝑘𝑗 |
|

|

𝜖𝑖𝑘𝑉0𝑘

)

, (C.6)
18
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Fig. C.1. Schematic of a portion of a dispersion surface (in blue) at the forcing location 𝑿0 with the level set at forcing frequency 𝜔𝑓 highlighted (solid black
ine).

here |0 denotes evaluation of the derivatives at the location of the point source, taken as 𝑿0 = 0, and at the initial condition for
he wave vector 𝒌0 of the given ray.

To take the limit of 𝑍 as the point source is approached along a ray, we first rewrite the definition of 𝑍 from Eq. (36) in the
orm

𝑍 = 𝑋𝑖𝜖𝑗𝑖
𝜕2𝜔
𝜕𝑘𝑗𝜕𝑘𝑙

𝜖𝑙𝑚𝑉𝑚. (C.7)

In the limit 𝑡→ 0+ we have 𝑋𝑖 ≈
𝑑𝑋𝑖
𝑑𝑡 𝑡 = 𝑉𝑖𝑡, so that

𝑍0 = lim
𝑡→0+

𝑍 = lim
𝑡→0+

𝑡𝑉𝑖𝜖𝑗𝑖
𝜕2𝜔
𝜕𝑘𝑗𝜕𝑘𝑙

𝜖𝑙𝑚𝑉𝑚. (C.8)

The sign of 𝑍0, which is required for the computation of ray amplitudes from a point source, follows as

sgn(𝑍0) = sgn
(

𝑉0𝑖𝜖𝑗𝑖
𝜕2𝜔
𝜕𝑘𝑗𝜕𝑘𝑙

|

|

|

|0
𝜖𝑙𝑚𝑉0𝑚

)

. (C.9)

To evaluate the quotient of 𝐽0 and 𝑍0, using Eqs. (C.5) and (C.8) we obtain

𝐽0
𝑍0

=
𝑉 −1
0

𝑑𝑘𝑛
𝑑𝛾 𝑄𝑛

𝜖𝑗𝑖𝑉0𝑗𝑄𝑖
. (C.10)

o simplify the derivation, vector 𝑸 is defined as

𝑄𝑖 =
𝜕2𝜔

𝜕𝑘𝑖𝜕𝑘𝑚

|

|

|

|0
𝜖𝑚𝑙𝑉0𝑙 . (C.11)

q. (C.10) is independent of 𝑡, so the quotient 𝐽0∕𝑍0 is finite as the point source is approached, despite 𝐽0 and 𝑍0 being singular.
Since 𝛾 parameterizes rays of the excitation frequency, 𝜕𝒌

𝜕𝛾 |0 is tangent to the excitation frequency level set of the dispersion
urface. Therefore, it is perpendicular to 𝑽 0, which is the gradient of the dispersion surface, so we can write 𝜕𝒌

𝜕𝛾 |0 = ‖

𝜕𝒌
𝜕𝛾 ‖0𝑽

⟂
0 . Here,

𝑽 ⟂
0 is defined as a unit tangent vector to the level set of the initial dispersion surface (which is normal to the group velocity at the

point source). Fig. C.1 illustrates vectors 𝑽 0 and 𝜕𝒌
𝜕𝛾 |0. Additionally, the vector 𝜖𝑖𝑗𝑉0𝑗 is perpendicular to the ray and can be written

as 𝜖𝑖𝑗𝑉0𝑗 = 𝑉 𝑽 ⟂
0𝑖. Therefore,

|

|

|

|

𝐽0
𝑍0

|

|

|

|

=

‖

‖

‖

𝜕𝒌
𝜕𝛾
‖

‖

‖0
𝑽 ⟂

0 ⋅𝑸

𝑉 2
0 𝑽

⟂
0 ⋅𝑸

= 𝑉 −2
0

‖

‖

‖

‖

𝜕𝒌
𝜕𝛾

‖

‖

‖

‖0
. (C.12)

Inserting Eq. (C.12) into Eq. (37), the final form of the constant 𝜓0 is

𝜓0 =
i𝑭 𝑇 𝒈0

√

sgn(𝐽0)
2𝜔

√

2𝜋𝑉0

‖

‖

‖

‖

𝜕𝒌
𝜕𝛾

‖

‖

‖

‖

1∕2

0
𝑒−i 𝜋4 sgn(𝑍0). (C.13)

ppendix D. Mass–spring network dispersion relations

To derive the dispersion relations of the mass–spring networks in Figs. 3 and 7, we begin by formulating the equations of motion
or a single mass. The length of the unit cell diagonal is 𝐿 =

√

ℎ2 + ℎ2 −1
19

1 2 and the angle of the diagonal is 𝜃 = tan (ℎ2∕ℎ1).
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Assuming small displacements, summing the forces of all springs connected to mass 𝑖, 𝑗 yields the equation of motion

𝑚

[

𝑢̈𝑖,𝑗1
𝑢̈𝑖,𝑗2

]

=𝐾(𝑢𝑖+1,𝑗1 − 𝑢𝑖,𝑗1 )
[

1
0

]

+𝐾(−𝑢𝑖−1,𝑗1 + 𝑢𝑖,𝑗1 )
[

−1
0

]

+𝐾(𝑢𝑖,𝑗+12 − 𝑢𝑖,𝑗2 )
[

0
1

]

+𝐾(−𝑢𝑖,𝑗−12 + 𝑢𝑖,𝑗2 )
[

0
−1

]

+𝐾
(

ℎ1(𝑢
𝑖+1,𝑗+1
1 − 𝑢𝑖,𝑗1 ) + ℎ2(𝑢

𝑖+1,𝑗+1
2 − 𝑢𝑖,𝑗2 )

)

𝐿−1
[

cos 𝜃
sin 𝜃

]

+𝐾
(

ℎ1(−𝑢
𝑖−1,𝑗−1
1 + 𝑢𝑖,𝑗1 ) + ℎ2(−𝑢

𝑖−1,𝑗−1
2 + 𝑢𝑖,𝑗2 )

)

𝐿−1
[

−cos 𝜃
− sin 𝜃

]

+𝐾
(

ℎ1(𝑢
𝑖+1,𝑗−1
1 − 𝑢𝑖,𝑗1 ) + ℎ2(−𝑢

𝑖+1,𝑗−1
2 + 𝑢𝑖,𝑗2 )

)

𝐿−1
[

cos 𝜃
− sin 𝜃

]

+𝐾
(

ℎ1(−𝑢
𝑖−1,𝑗+1
1 + 𝑢𝑖,𝑗1 ) + ℎ2(𝑢

𝑖−1,𝑗+1
2 − 𝑢𝑖,𝑗2 )

)

𝐿−1
[

−cos 𝜃
sin 𝜃

]

.

(D.1)

f ℎ1 = ℎ2, these equations of motion simplify to those presented by Jensen (2003). To perform direct numerical simulations on a
inite mass–spring network, Eq. (D.1) is used to extract the mass and stiffness matrices.

Based on the equation of motion for a single mass, which represents one unit cell for the chosen networks, dispersion relations
re derived by assuming that the network is 𝒚-periodic and applying Bloch boundary conditions. This leads to displacements of the
orm

𝒖𝑖𝑗 =

[

𝐴𝑖𝑗1
𝐴𝑖𝑗2

]

𝑒𝑖(𝒌⋅𝒚−𝜔𝑡) =

[

𝐴𝑖𝑗1
𝐴𝑖𝑗2

]

𝑒i(ℎ1𝑘1𝑖+ℎ2𝑘2𝑗)𝑒−i𝜔𝑡. (D.2)

Inserting Eq. (D.2) into Eq. (D.1) and simplifying leads to the following eigenvalue problem:
([

𝛼 𝛽
𝛽 𝜂

]

− 𝜔2𝑰
)

𝑨 = 𝟎, (D.3)

where

𝛼 = 2𝐾
𝐿𝑚

[

1 − cos(ℎ1𝑘1 + ℎ2𝑘2)
]

ℎ1 cos 𝜃 +
2𝐾
𝐿𝑚

[

1 − cos(ℎ1𝑘1 − ℎ2𝑘2)
]

ℎ1 cos 𝜃 +
2𝐾
𝑚

[

1 − cos(ℎ1𝑘1)
]

,

𝛽 = 2𝐾
𝐿𝑚

[

1 − cos(ℎ1𝑘1 + ℎ2𝑘2)
]

ℎ1 sin 𝜃 −
2𝐾
𝐿𝑚

[

1 − cos(ℎ1𝑘1 − ℎ2𝑘2)
]

ℎ2 cos 𝜃,

𝜂 = 2𝐾
𝐿𝑚

[

1 − cos(ℎ1𝑘1 + ℎ2𝑘2)
]

ℎ2 sin 𝜃 +
2𝐾
𝐿𝑚

[

1 − cos(ℎ1𝑘1 − ℎ2𝑘2)
]

ℎ2 sin 𝜃 +
2𝐾
𝑚

[

1 − cos(ℎ2𝑘2)
]

.

(D.4)

The eigenvalues of the 2 × 2 matrix in Eq. (D.3) are available analytically. This results in a set of analytical dispersion relations for
the two frequencies 𝜔1 and 𝜔2 of the mass spring network, given by

𝜔2
1 =

1
2

(

𝛼 + 𝜂 −
√

(𝛼 − 𝜂)2 + 4𝛽2
)

𝜔2
2 =

1
2

(

𝛼 + 𝜂 +
√

(𝛼 − 𝜂)2 + 4𝛽2
)

.
(D.5)

For the case of the spatially graded mass–spring network, these represent the local dispersion relations under the assumption of
local periodicity.
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