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A B S T R A C T

We numerically and experimentally investigate the propagation of mechanical waves in two-
dimensional periodic and spatially graded elastic beam lattices. Experiments on metallic lattices
admit the characterization of the linear elastic wave dispersion over a wide range of frequencies,
resulting in complete, experimentally-constructed dispersion surfaces in excellent agreement
with predictions obtained from finite element-based Bloch wave analysis. While Timoshenko
beam theory is shown to be sufficiently accurate for predicting the lowest modes, experiments
prove that solid finite elements are required to capture the dispersion relations at higher
frequencies as well as when mode coupling occurs. Based on an improved numerical procedure,
group velocity maps further highlight the directionality of wave dispersion and allow for the
simple identification of bandgaps. In addition to classically studied periodic trusses, we extend
the framework to spatially graded structures and demonstrate acoustic rainbow trapping in
beam lattices undergoing out-of-plane vibrations. Our experiments confirm broadband vibration
attenuation of the typical meta-wedge type previously observed only in optics and few
mechanical studies. Results further show convincing agreement between Bloch theory-based
predictions, finite element simulations, and experimental measurements. Such spatially-variant
architected lattices show great promise for steering the motion of elastic waves in applications
from wave guiding and wave shielding to energy harvesting.

. Introduction

Although the propagation of elastic waves in heterogeneous periodic media is a rather old topic (Brillouin, 1946; Mead, 1973), it
ook until (Kushwaha et al., 1993) and Sigalas and Economou (1993) brought attention to the analogy to photonics (Joannopoulos
t al., 1995) that the same principles were harnessed systematically for phononic and elastic wave motion, and for the creation of
etamaterials for wave guidance. Inspired by the proposal of Yablonovitch (1987) for electromagnetic waves, early studies focused

n realizing phononic bandgaps, i. e., frequency bands in which no elastic wave can travel, in two-phase composites (Vasseur et al.,
998; Liu, 2000; Sigmund and Jensen, 2003). As the interest in designing large bandgaps grew, several example realizations were
eported for composites (Sigmund, 1994; Bilal and Hussein, 2011; D’Alessandro et al., 2016). Similarly, the early study of Langley
t al. (1997) provided the blueprint for truss and beam lattices that admit wave guidance. The systematic exploration of bandgap
ngineering for wave attenuation and wave guidance started with, among others, the works of Ruzzene et al. (2003) and Phani
t al. (2006).
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As strut-based cellular architectures possess structurally appealing properties such as high specific stiffness and strength (Meza
t al., 2017), a substantial scientific effort has gone into designing structural (meta-)materials with target properties. A popular and
asily manufacturable example are truss lattices1, and a key performance metric has been the as-designed steering or attenuation of
aves. Wave guidance mainly leverages two physical principles. On the one hand, local resonance of structural members can lead

o wide bandgaps (e.g., Gonella et al., 2009; Krödel et al., 2014; Matlack et al., 2016; Li et al., 2017; Bilal et al., 2021; Aguzzi et al.,
022). On the other hand, wave scattering in a periodic truss can attenuate waves, which has been exploited – along with local
esonance – to achieve wave beaming, i.e., the guided motion of waves with strong directionality (see e.g., Ruzzene et al., 2003;
elhofer and Kochmann, 2017; Casadei and Rimoli, 2013; Pal et al., 2016).

Key to understanding and predicting elastic wave motion in periodic media – such as periodic trusses – is the exploitation of
loch’s theorem (Bloch, 1929), which solves the equations of motion under the assumption of a traveling plane wave of arbitrary
avelength. The most popular techniques to numerically solve the associated Bloch eigenvalue problem include the Plane Wave
xpansion Method (Sigalas and Economou, 1993; Kushwaha et al., 1993), the Multiple Scattering Method (Sigalas et al., 2009), and
he Finite Element Method (Phani et al., 2006; Mace and Manconi, 2008; Hussein, 2009; Collet et al., 2011). For our purposes, we
estrict ourselves to the Finite Element (FE) method for its maturity, accuracy, and generality. In an FE setting, Bloch’s theorem can
e enforced using Bloch boundary conditions applied to a periodic unit cell, or by substituting a Bloch operator into the governing
quations. The two approaches are commonly referred to as the Bloch Boundary Condition Formulation (Mace and Manconi, 2008;
ussein, 2009) and the Bloch Operator Formulation (Collet et al., 2011), respectively. The former has the advantage of being
ompatible with a generic FE discretization but lacks the ability to obtain attenuation information, while the latter can resolve the
omplex-valued dispersion relation but requires FE discretization-specific derivations (Palermo and Marzani, 2020). To reduce the
omputational cost for band structure calculations (which can be significant when performing many repeated eigenvalue calculations
o obtain dispersion surfaces), a number of order reductions schemes have been proposed (Krattiger and Hussein, 2017; Palermo
nd Marzani, 2020).

When it comes to wave motion in truss lattices, research so far has mainly focused on periodic structures, while the potential
f leveraging spatially variant architectures, as demonstrated in photonics (Tsakmakidis et al., 2007; Rumpf et al., 2015), is yet to
e fully realized. Only recently, Xie et al. (2018) and Zhao et al. (2020) suggested truss-based acoustic Luneburg lenses, using a
ensity grading in a cubic truss lattice, which however does not extend to a rigorous mechanics treatment. Aguzzi et al. (2022)
odified an octet truss by changing the mass of local resonators, which proved to be effective for generating broad bandgaps and

uiding waves but offers a limited design space. Trainiti et al. (2017) reported wave filtering in graded lattices, but focused on only
n-plane waves and used undulations to grade the lattice. The concepts of transformation elastodynamics have been applied to rich
esign spaces and resulted in successful examples of using spatially variant elastic properties to guide waves (Chen and Chan, 2010;
un et al., 2019; Chang and Hu, 2012; Chen et al., 2016; Nassar et al., 2020); yet, this approach is limited to wave motion in the
ong-wavelength limit (without accounting for wave dispersion at higher frequencies, which gains importance in truss lattices). Very
ecently, the application of ray tracing techniques to mechanical waves has offered new opportunities for controlling wave motion
hrough the design of spatially graded structures at high frequencies (Dorn and Kochmann, 2022, 2023b,a). Despite promising
heoretical and numerical evidence of wave guidance and experimental proof of controlled wave transmissibility, their designs still
ack experimental full-field confirmation of an effective wave control. In fact, almost all prior studies that experimentally probed
ave motion in truss-based metamaterials assessed the success by measuring the transmissibility of waves through the medium –
ut lacked full-field measurements of the propagating waves.

In summary, although a few studies have previously used full-field experimental characterization of mechanical vibrations in
ellular structures (Zhou et al., 2016; Trainiti et al., 2017; Schaeffer et al., 2017), their application to periodic and spatially graded
russ lattices has been lacking, in particular, those undergoing out-of-plane deformation. Therefore, the aim of this study is two-fold.
n the one hand, we demonstrate how full-field measurements of wave motion in periodic truss lattices can be used to experimentally
haracterize complete dispersion surfaces, which are shown to be in excellent agreement with predictions from FE-based Bloch wave
nalysis and furthermore shed light onto the accuracy of beam vs. solid FE representations. We select the orthorhombic lattice family
ith a rectangular base unit cell as a demonstrator and experimentally characterize waves in the lattice for different unit cell aspect

atios and across a wide range of frequencies (covering the lowest few dispersion surfaces). We also discuss the wave propagation
haracteristics in the different lattices by the help of an improved version of the directional group velocity maps of Zelhofer and
ochmann (2017). On the other hand, we exploit the knowledge gained from periodic lattices to understand and design wave
ttenuation in a spatially graded truss lattice. By combining different realizations of the orthorhombic unit cell into a graded lattice,
e create an ultrawide phononic bandgap that realizes ‘ultrasonic rainbow trapping’ in a spatially variant architected lattice; i.e., we

how experimentally (for the first time, to the best of our knowledge) that the combination of different unit cells in a graded lattice
ndergoing out-of-plane deformation can effectively superimpose individual bandgaps to achieve broadband wave attenuation. This
xtends previously demonstrated rainbow trapping in photonic metamaterials, (Tsakmakidis et al., 2007) as well as elastic pillar
rrays (Colombi et al., 2016) and one-dimensional locally resonant mechanical metamaterials (De Ponti et al., 2020), to the new
etting of two-dimensional truss lattices.

The remainder of this contribution is organized as follows. Section 2 reviews the relevant theory of elastodynamics in periodic
edia and the resulting dispersion relations and directional group velocity. In Section 3, we introduce the experimental setup

1 Here and in the following, we use the term truss lattice to refer to periodic assemblies of struts that may undergo stretching and bending (and torsion in
three dimensions). Though the FE community may differentiate between trusses (composed of pin-jointed bars) and frames (assuming welded beams), we here
2

use the term truss for all such structural assemblies, as is common in the metamaterials literature.
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to validate the presented methods and observe wave motion in trusses. Section 4 describes the numerical treatment of Bloch
wave analysis and time-transient simulations. Section 5 summarizes the results, including the experimental characterization of the
dispersion relations of periodic square (Section 5.1) and rectangular lattices (Section 5.2) as well as results for the spatially variant
lattice (Section 5.3). Finally, Section 6 concludes this study.

2. Elastodynamics of periodic media

Let us briefly review the theory of wave dispersion in periodic elastic media as a foundation for the subsequent discussions. For
more detailed treatment of the topic, the reader is referred to, e.g., Hussein et al. (2014) and Phani and Hussein (2017).

The propagation of small-amplitude stress waves in a linear elastic body 𝛺 ⊂ R𝑑 in 𝑑 dimensions is governed by the balance of
inear momentum, which – neglecting the influence of body forces – is written as

div𝝈 = 𝜌𝒖̈, (1)

here 𝒖 ∶ 𝛺 × R → R𝑑 is the displacement field depending on position 𝒙 ∈ 𝛺 and time 𝑡, 𝜌 is the mass density, and 𝝈 the
nfinitesimal (Cauchy) stress tensor with components 𝜎𝑖𝑗 = C𝑖𝑗𝑘𝑙𝜀𝑘𝑙 in a Euclidean basis, where 𝜀𝑖𝑗 = 1

2 (𝑢𝑖,𝑗 + 𝑢𝑗,𝑖) denotes the
infinitesimal strain tensor, and minor symmetry of C further reduces the above to 𝜎𝑖𝑗 = C𝑖𝑗𝑘𝑙𝑢𝑘,𝑙. Here and in the following, we
imply Einstein’s summation convention over repeated indices, and we abbreviate partial spatial derivatives by indices following a
comma. C is the fourth-order elasticity tensor, whose components C𝑖𝑗𝑘𝑙 satisfy major and minor symmetry. Owing to the separable
form of Eq. (1) in the linear elastic case, linear waves assume the form of a time-harmonic displacement field

𝒖(𝒙, 𝑡) = 𝒖̂(𝒙, 𝜔)𝑒−𝑖𝜔𝑡, (2)

whose amplitude field 𝒖̂ ∶ 𝛺 → C𝑑 is generally complex-valued, while the frequency 𝜔 ∈ R is real-valued in a linear elastic medium.
Inserting (2) into (1) with 𝜎𝑖𝑗 = C𝑖𝑗𝑘𝑙𝑢𝑘,𝑙 yields the differential equation

C𝑖𝑗𝑘𝑙 𝑢̂𝑘,𝑗𝑙 + C𝑖𝑗𝑘𝑙,𝑗 𝑢̂𝑘,𝑙 + 𝜌𝜔2𝑢̂𝑖 = 0, (3)

which can in general be solved for pairs of frequency 𝜔 and associated amplitude field 𝒖̂.
When applying the above relations to waves in metamaterials, we exploit that a periodic medium is characterized as a simple

Bravais lattice (Bravais, 1850) by invariance under any discrete lattice translation

𝑹 =
𝑑
∑

𝑖=1
𝑛𝑖𝒂𝑖 with 𝑛𝑖 ∈ Z, (4)

where {𝒂1,… ,𝒂𝑑} denote the linearly independent lattice basis vectors. For a periodic linear elastic solid, the periodicity in (4)
translates into a periodic mass density and elasticity tensor, i.e., respectively,

𝜌(𝒙 +𝑹) = 𝜌(𝒙), C(𝒙 +𝑹) = C(𝒙). (5)

Periodicity further admits the identification of a unit cell 𝛺UC, such that every position 𝒙 ∈ 𝛺 in the infinite, periodic medium is
uniquely linked to a position 𝒙UC ∈ 𝛺UC inside the unit cell by 𝒙 = 𝒙UC + 𝑹 with a unique set of integers {𝑛1,… , 𝑛𝑑} in (4). The
choice of the unit cell is, of course, not unique. In fact, the choice of both unit cell and lattice vectors is infinite. For convenience,
we choose a primitive unit cell, i.e., the smallest possible unit cell spanned by a set of primitive lattice vectors {𝒂prim

1 ,… ,𝒂prim
𝑑 }

such that ‖𝛺UC‖ = ‖ det(𝒂prim
1 ,… ,𝒂prim

𝑑 )‖, which we simply refer to as the unit cell (UC) in the following.
For a periodic medium as characterized by (4), Bloch’s theorem states that for any pair (𝜔, 𝒖̂) that satisfies (3), there exists at

least one wave vector 𝒌 ∈ C𝑑 such that the displacement field (2) under a discrete lattice translation 𝑹 according to (4) is modulated
by a plane wave with that wave vector (Bloch, 1929), i.e.,

𝒖̂(𝒙 +𝑹, 𝜔;𝒌) = 𝒖̂(𝒙, 𝜔;𝒌) 𝑒𝑖𝒌⋅𝑹 , (6)

where we denote by 𝒖̂(𝒙, 𝜔;𝒌) the mode shape 𝒖̂(𝒙, 𝜔) for a given 𝒌-vector. Exploiting Bloch’s theorem (6) in conjunction with the
periodicity of the medium, we realize that

𝒖̂(𝒙, 𝜔;𝒌) = 𝒖̂(𝒙UC +𝑹, 𝜔;𝒌) = 𝒖̂(𝒙UC, 𝜔;𝒌) 𝑒𝑖𝒌⋅𝑹 , (7)

so that the governing equations of wave motion in a periodic elastic medium can be reduced to solving the following boundary
value problem on the UC:

[

C𝑖𝑗𝑘𝑙 𝑢̂𝑘,𝑗𝑙 + C𝑖𝑗𝑘𝑙,𝑗 𝑢̂𝑘,𝑙 + 𝜌𝜔2𝑢̂𝑖 = 0 in 𝛺UC,

𝑢̂+𝑖 = 𝑢̂−𝑖 𝑒
𝑖𝒌⋅𝑹 on 𝜕𝛺UC,

(8)

where 𝒖̂± = 𝒖̂(𝒙±) are the displacements of pairs of periodically opposite points 𝒙± on the unit cell’s outer boundary 𝜕𝛺UC. Eq. (8)
is also referred to as the Bloch boundary condition formulation (Mace and Manconi, 2008).

The propagation of waves in a periodic medium is effectively described by the dispersion relation, which links wave vector 𝒌 ∈ C𝑑

to frequency 𝜔 ∈ R. A numerically convenient way to obtain that relation is to solve the generalized eigenvalue problem resulting
from (8) with appropriate Bloch boundary conditions for all pairs (𝜔 , 𝒖̂ ), and to repeat this procedure for all relevant 𝒌-vectors.
3

𝑛 𝑛
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This leads to dispersion relations of the type 𝜔𝑗 = 𝜔𝑗 (𝒌), the 𝑗th solution corresponding to the 𝑗th mode of the system. The generally
complex-valued wave vector 𝒌 = 𝝁+𝑖𝜹 contains information about the attenuation (or growth) 𝝁 and the phase 𝜹 of a wave traveling
hrough the periodic medium. For ease of simulations and since we here are primarily interested in wave motion outside of bandgaps,
e here neglect the attenuation (𝝁 = 𝟎) and consider lossless wave motion in the elastic medium, so that 𝒌 ∈ R𝑑 .

The resulting wave vectors 𝒌 ∈ R𝑑 live in a reciprocal space, which – analogous to the physical lattice satisfying (4) – is invariant
under reciprocal lattice translations

𝑮 =
𝑑
∑

𝑖=1
𝑚𝑖𝒃𝑖 with 𝑚𝑖 ∈ Z, (9)

where {𝑚1,… , 𝑚𝑑} is a unique set of integers, and the reciprocal lattice vectors {𝒃1,… , 𝒃𝑑} are related to the physical basis vectors
{𝒂1,… ,𝒂𝑑} by the relation 𝒂𝑖 ⋅𝒃𝑗 = 2𝜋𝛿𝑖𝑗 , using Kronecker’s delta. As a consequence, the complete dispersion information is contained
within a primitive unit cell in reciprocal space (Brillouin, 1946), known as the First Brillouin Zone 𝑈FBZ and spanned by the reciprocal
lattice vectors {𝒃1,… , 𝒃𝑑}. Moreover, if the UC possess certain symmetries, a subdomain of 𝑈FBZ can contain the full dispersion
information of the unit cell. The smallest such domain that contains all dispersion information is the Irreducible Brillouin Zone 𝑈IBZ
(see Fig. 2). When computing the dispersion relations in practice, it is therefore sufficient to sample over 𝒌-vectors only from within
𝑈IBZ. Corners of the Irreducible Brillouin Zone are high symmetry points in reciprocal space, and often the edges connecting the
high symmetry points are considered to be representative of the global dispersion behavior (Hussein et al., 2014).

We close by noting that the dispersion relation contains information about the group velocity 𝒗𝑔 , which indicates the direction
and speed of a wave packet and hence the direction of energy flow during wave motion. For 𝒌 ∈ R𝑑 , it is obtained as

𝒗𝑔(𝒌) =
𝜕𝜔(𝒌)
𝜕𝒌

. (10)

𝑣𝑔 = |𝒗𝑔| serves as an excellent indicator for wave guiding, since it correlates well with other commonly used indicators such as,
e.g., the maximum displacement or velocity amplitudes of propagating waves (Zelhofer and Kochmann, 2017). Frequency ranges
that are not covered by any dispersion surface for all real wave vectors 𝒌 (and for which hence no group velocity exists), are referred
to as complete bandgaps. By contrast, directional bandgaps imply that wave packets travel only in certain directions. All other cases
are referred to as pass bands.

3. Experiments

3.1. Sample design and manufacturing

Truss lattices with rectangular unit cells were laser-cut out of thin square plates made of aluminum alloy 6061-T6, having
dimensions 40 × 40 cm and thickness ℎ = 1 mm. An aluminum alloy was chosen for ease of manufacturing and to ensure
a linear elastic material response with little wave attenuation. Prior studies have typically utilized 3D-printed polymer lattices
and metamaterials to investigate wave motion, which, unfortunately, makes it non-trivial to decouple wave attenuation and
dispersion due to material-intrinsic viscoelastic damping and lattice topology. Here, by contrast, the chosen metallic samples admit
approximately linear elastic wave motion with minimal artifacts of damping. A lattice spacing of 𝐿 = 5 mm along the 𝑥-direction
and a beam width 𝑤 ≈ 500 μm were chosen. The resulting beam slenderness ratio is ℎ∕𝐿 ≤ 0.2. Four different types of structured
plates were manufactured with different unit cell aspect ratios: periodic lattices with aspect ratios 𝛾 = 1, 𝛾 = 1.3, and 𝛾 = 2, as well
s a spatially graded lattice, whose aspect ratio varies in the vertical direction between 𝛾 = 1 at the center and 𝛾 = 2 at the top and
ottom, as shown in Fig. 2.

.2. Experimental setup

The experimental setup is shown in Fig. 1. A piezoelectric transducer (ThorLabs PA3CBW) was glued to the center of each truss
late with superglue. The transducer achieved a maximum displacement of 1 μm with maximum and resonant frequencies of 1 MHz
nd 920 kHz, respectively. The transducer was actuated by a high-voltage amplifier (ThorLabs HVA200) with input from an arbitrary
unction generator (Teledyne T3AFG40). The input signals were recorded using an external digital oscilloscope (Tektronix TBS2000
eries) for real-time diagnostics.

Wave propagation was captured using a Scanning Laser Doppler Vibrometer (SLDV; Optomet SWIR) with an infrared laser source
wavelength 1550 nm). Out-of-plane particle velocities were measured as a function of space and time with a maximum measurable
elocity set at 490 mm/s. Data was collected using a built-in data acquisition unit at 32-bit resolution. Due to the relatively low
olume fraction of material in the structured plates, a custom grid was designed for laser scanning. The spatial resolution of scanning
as set to ∼ 1 mm (5−10 points per unit cell edge) with sampling frequencies of at least 2 MHz (temporal resolution 500 ns). For

he frequency analysis, spectral resolutions of 1 kHz and 250 Hz were explored. While the data quality with the latter was clearly
etter, both were adequate to capture dispersion in frequency–wavenumber space.

Triggering of the data acquisition system (integrated in the SLDV) was critical to measure the traveling wavefront, as opposed
o conventional steady-state vibrations. The wavefronts were captured using separate transducer excitation events for every spatial
oint recorded. The input signal was generated by the function generator in bursts with a time period of 2 seconds. The burst period
as chosen to wait for complete attenuation of wave reflections from sample edges. To synchronize measurements from each spatial
4
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Fig. 1. Experimental setup: the aluminum truss plate is clamped vertically and excited by a piezo-transducer at its center, while a Scanning Laser Doppler
Vibrometer is used to capture the out-of-plane velocity profile of the vibrating sample.

point, a 3 V transistor-to-transistor logic (TTL) trigger pulse was sent at the start of each burst from the function generator to the
oscilloscope and the data acquisition system of the SLDV to record data. At least five samples were recorded and averaged at each
spatial point for postprocessing.

Linear frequency chirp signals at three different center frequencies were used as input to the transducer to span a wide frequency
pectrum. (Fig. 12 in Appendix A shows the velocity measured at the excitation point and its frequency spectrum for one of three
ifferent chirp signals used in experiments.) A low-pass filter with a cut-off frequency of 500 kHz was applied to all signals. The
rimary difference between the three signals is in the frequency content. While the spectral amplitudes of the input signal to the
ransducer were nominally constant, the transfer function of the transducer as a function of frequency (i.e., the ratio of output to
nput power,  (out)∕ (in)(𝜔)) is not. The data in Appendix A (see Fig. 12), however, shows that this effect is not significant, especially
n the frequency range of interest. Snapshots at 𝑡 = 150𝜇𝑠 for chirp signal 1 are also shown in Appendix A (Fig. 13) for different
russ lattices.

.3. Data analysis

The experimental data was analyzed with the aim of characterizing the real-time propagation of out-of-plane waves fronts in
D lattices as well as their signal peaks in wavenumber-frequency (𝑘𝑥-𝑘𝑦-𝜔) space. Rather than obtaining the transmissibility at

dedicated frequencies or along high-symmetry paths in the FBZ, which is common in the literature, our protocol extracts complete
dispersion surfaces of the lowest few modes purely from experimental data as follows. The spatio-temporal out-of-plane particle
velocities from the data acquisition system of the SLDV were re-cast into a matrix 𝑣(𝑥, 𝑦, 𝑡). A spatio-temporal tapered cosine window
 (𝑥, 𝑦, 𝑡) = ̂ (𝑥, 𝑦)̃ (𝑡) was used to smoothly remove data from the edges of the plate and at long times. The windowed velocity data
was calculated as 𝑣̂(𝑥, 𝑦, 𝑡) = ̂ (𝑥, 𝑦)̃ (𝑡)𝑣(𝑥, 𝑦, 𝑡). To reduce noise, a low-pass Butterworth filter of order 15 and cut-off frequency
500 kHz was used on the windowed velocity data. The filtered velocity data is denoted by 𝑣̄(𝑥, 𝑦, 𝑡). To compute dispersion surfaces,
a 3D Fast Fourier Transform (FFT) was performed on 𝑣̄(𝑥, 𝑦, 𝑡), using the fftn function of the numpy package in Python. The 3D
FFT data, 𝑉 (𝑘𝑥, 𝑘𝑦, 𝜔), was normalized by the ‘volume’ of the Fourier space (𝑉 = 𝑁𝑥𝑁𝑦𝑁𝑡, where 𝑁𝑥, 𝑁𝑦, 𝑁𝑡 are the numbers of
sampled points in the 𝑥-direction, 𝑦-direction, and time, respectively) to present an analogue of the elastic energy density in Fourier
space. The magnitude of the 3D FFT data was normalized by that of the temporal Fourier transform of the particle velocity 𝑉0(𝑡)
at the point of excitation, resulting in the normalized Fourier transform 𝑉 (𝑘𝑥, 𝑘𝑦, 𝜔)∕𝑉0(𝜔). For data representation, we use both
the normalized Fourier transform and the power spectral density,  = 20 log10(‖𝑉 ‖∕‖𝑉0‖). In addition, 1D Fourier transforms were
computed along the time axis for each spatial point (denoted as 𝑉 (𝑥, 𝑦, 𝜔)). This representation is used to illustrate the effects of
spatial wave guiding in the spatially-graded samples.

4. Simulations

4.1. Wave finite element method

Based on the theory introduced in Section 2, we solve the governing Eqs. (8) by the Wave Finite Element Method (WFEM) (Mace
and Manconi, 2008; Hussein, 2009), which relies on an FE discretization in space. All simulations have been performed in
ae108 (Weberndorfer), a scalable variational framework for FE analysis. The harmonic eigenvalue problem (8) assumes the
discretized form

( 2 ) ̂
5
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Fig. 2. First quadrant of a rectangular lattice that is linearly graded in the 𝑦-direction. At the origin, at 𝑦 = 0, the lattice has an aspect ratio of 𝛾 = 1, whereas
at the top and bottom borders, at 𝑦 = ±40𝐿, the aspect ratio is 𝛾 = 2. The excitation node 𝑂 at the origin is marked by a red dot. In transient simulations,
all nodes in the shaded blue areas are fixed. (a) Locally, the rectangular truss lattice is assumed to be (quasi-)periodic with characteristic beam length 𝐿 and
unit cell aspect ratio 𝛾. The rectangular cross-sections of all struts have width 𝑤 = 𝐿∕10 and out-of-plane thickness ℎ = 𝐿∕5. The gray area depicts the chosen
representative unit cell 𝛺𝑈𝐶 in real space. (b) In reciprocal space, the First Brillouin Zone 𝑈FBZ and the Irreducible Brillouin Zone 𝑈IBZ are depicted in gray and blue,
respectively. The path along the circumference of the IBZ through high-symmetry points 𝛤 , X, S, and Y is referred to as the high-symmetry path.

with the global stiffness matrix 𝑲, global consistent mass matrix 𝑴 , and a global harmonic displacement vector 𝑼 (𝑡) = 𝑼̂𝑒𝑖𝜔𝑡 with
amplitude vector 𝑼̂ ∈ C𝑛𝑑 for an FE mesh having 𝑛𝑑 degrees of freedom.

Bloch boundary conditions (8)2 link the nodal displacement amplitudes according to

𝒖̂(𝒙+) = 𝑒𝑖𝒌⋅(𝒙
+−𝒙−)𝒖̂(𝒙−) (12)

for all periodic pairs of nodes on opposite faces (or edges) of the unit cell. In the discrete setting, this admits defining a set of target
nodes having displacements 𝑼+, and a set of source nodes with displacements 𝑼−: the latter are independent degrees of freedom
of the unit cell, while the former are slave to the latter via a linear transformation

𝑼̂+ = 𝑷 (𝒌)𝑼̂−, (13)

where 𝑷 (𝒌) is called the transformation matrix dependent on 𝒌 through (12). From (11) and (13) follows the generalized eigenvalue
problem

[

𝑲̃(𝒌) − 𝜔2𝑴̃(𝒌)
]

𝑼̂− = 𝟎 with 𝑲̃(𝒌) = 𝑷 ∗(𝒌)𝑲𝑷 (𝒌), 𝑴̃(𝒌) = 𝑷 ∗(𝒌)𝑴𝑷 (𝒌), (14)

where (⋅)∗ indicates the conjugate transpose of a matrix. Note that due to the definition of 𝑷 in our problem, 𝑲̃ and 𝑴̃ are positive-
(semi-)definite, which results in 𝜔2 ≥ 0 and real-valued eigenvectors 𝑼̂−. To solve the eigenvalue problem (14) for pairs (𝜔𝑗 , 𝑼̂

−
𝑗 )

for a given 𝒌-vector from the IBZ, we apply a Shift and Invert Spectral Transformation to the problem and use the Krylov-Schur
algorithm to compute 𝑛𝑒 eigenpairs with smallest eigenvalue magnitude corresponding to the 𝑛𝑒 lowest modes of the system, using
the Scalable Library for Eigenvalue Problem Computations (SLEPc) (Hernandez et al., 2005). In a final step, the eigenvector 𝑼̂−

𝑗 is
transformed by (13) to obtain the complete displacement amplitude vector 𝑼̂ 𝑗 representing the physical mode shape.

We evaluate the eigenfrequencies 𝜔𝑗 (𝒌) on an equally-spaced grid of 200 × 200 𝒌-vectors in the reciprocal IBZ, resulting in a
discrete approximation of the dispersion surface for each mode 𝑗. When presenting results in subsequent sections, we generally
report the normalized frequency

𝑓 =
𝑓𝐿

= 𝜔𝐿 , (15)
6

𝑐 2𝜋𝑐
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Fig. 3. A representative unit cell 𝛺UC of a rectangular truss lattice with aspect ratio 𝛾 = 1.3 discretized using (a) solid finite elements and (b) Timoshenko beam
elements. The solid FE mesh uses linear tetrahedral elements with a maximum edge length of 𝑤∕8. A periodic mesh is ensured by copying the boundary mesh
from source to target boundaries. Alternatively, we use Timoshenko beam elements with a maximum element length of 𝐿∕20 for computational efficiency.

where 𝑐 =
√

𝐸∕𝜌 is the longitudinal wave speed within a homogeneous strut of Young’s modulus 𝐸 and mass density 𝜌. By symmetry,
we consider only the Irreducible Brillouin Zone 𝑈IBZ and extend the data onto 𝑈FBZ for computational efficiency. Besides full
dispersion surfaces, we compute the dispersion relation along the high-symmetry path 𝛤 -X-S-Y-𝛤 (see Fig. 2(b)).

In subsequent examples, we study wave propagation in 2D truss lattices, which in general undergo longitudinal and flexural
motion both within and out of the plane spanned by the truss lattice. To identify out-of-plane modes (which are the ones tracked
in experiments later), we introduce the out-of-plane ratio of a mode 𝑗 as

𝛽𝑗 =
|

|

|

𝑼̂ 𝑧
𝑗
|

|

|

|

|

|

𝑼̂ 𝑗
|

|

|

∈ [0, 1], (16)

where 𝑼̂ 𝑧
𝑗 is the (real part of the) amplitude vector of mode 𝑗, containing only displacements in the out-of-plane 𝑧-direction.

Rotational degrees of freedom, as part of beam theory, are not considered here. 𝛽𝑗 ≈ 1 is an out-of-plane mode, whereas 𝛽𝑗 ≈ 0
implies an in-plane mode. To capture all primarily out-of-plane modes, we include in our investigation all modes with 𝛽𝑗 > 0.1. (In
practice, we observe that mixed modes occur mainly at higher frequencies and have little relevance in this study.)

To better understand the directionality of wave motion, we extract from the dispersion relations the group velocity 𝒗𝑔 of wave
packets traveling at a given frequency, by modifying the approach of Zelhofer and Kochmann (2017). To differentiate 𝜔𝑗 (𝒌) with
respect to 𝒌 (as required in (10)), we interpolate the dispersion surfaces 𝜔𝑗 (𝒌) using bivariate cubic splines over a rectangular grid
to guarantee (at least) 1-continuity, which admits the computation of the group velocity in (10) from the splines by differentiation.
When discussing results, we will report the normalized group velocity

𝑣̄𝑔 = |𝒗𝑔|∕𝑐. (17)

The group velocity 𝒗𝑗𝑔(𝒌) is evaluated for each dispersion surface 𝑗 over the entire FBZ on an evenly spaced grid of 2000 × 2000
𝒌-points in reciprocal space, resulting in 4 ⋅ 106 data points. At each 𝒌-point, we compute 𝒗𝑗𝑔(𝒌) and decompose it into its speed
𝑣𝑗𝑔 = |𝒗𝑗𝑔(𝒌)| and direction 𝜃𝑗 (𝒌) in the 2D plane of the lattice. We generate a group velocity map by plotting each pair

(

𝑣𝑗𝑔(𝒌), 𝜃𝑗 (𝒌)
)

(for each 𝒌-point and for each of the lowest few dispersion surfaces 𝑗) as a point in a polar plot, as shown in Fig. 7. Radial rays imply
a constant direction 𝜃, while circles of fixed radius contain iso-frequency information. The color code indicates the group velocity
𝑣𝑗𝑔 . Wherever the data from two (or more) modes overlap, we present the mode with the highest group velocity, as that mode is
expected to be observed first in transient wave motion. (However, we generally note that, for some directions and frequencies,
different modes might support different wave packet speeds.) Points in the polar plot that remain white do not support any group
velocity and hence indicate bandgaps. Note that, in contrast to Zelhofer and Kochmann (2017), we include in the group velocity
maps every interpolated data point of the 2000 × 2000 grid, which avoids the distortions around the band gaps seen in Zelhofer
and Kochmann (2017).
7
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Table 1
Material properties of aluminum alloy 6061-T6 used in
simulations.

E [GPa] 𝜈 [–] 𝜌 [kg/m3]

69 1/3 2700

4.2. Transient wave analysis

For a comparison with results from Bloch wave analysis, we also perform dynamic FE simulations of entire trusses. A time-
armonic out-of-plane excitation is applied at the truss’ center (see Fig. 2), for which the propagating waves are simulated over
ime by integrating the FE equations of motion using an implicit Newmark-𝛽 scheme (with 𝛽 = 1∕4 and 𝛾 = 1∕2 to avoid numerical

damping). We impose the excitation by prescribing the out-of-plane displacement, velocity, and acceleration of the center node at
each time step according to, respectively,

𝑢𝑧𝑜(𝑡) = 𝑢̂𝑜 sin(𝜔𝑡), 𝑢̇𝑧𝑜(𝑡) = 𝜔𝑢̂𝑜 cos(𝜔𝑡), 𝑢̈𝑧𝑜(𝑡) = −𝜔2𝑢̂𝑜 sin(𝜔𝑡), (18)

with an arbitrary amplitude 𝑢̂𝑜 ∈ R and a prescribed frequency 𝜔 > 0. Nodes on the outer boundary (i. e., all nodes in the blue
haded region in Fig. 2) are fixed with clamped boundary conditions. We stop all simulations before any wave reaches the blue
egion to prevent wave reflection and the resulting interference.

.3. Finite element discretization

Both Bloch wave analysis (Section 4.1) and transient wave analysis (Section 4.2) require a choice of the FE discretization.
n subsequent simulations, we use – separately – two types of FE representations: (i) fully resolved solid elements, specifically
hree-dimensional (3D) constant-strain tetrahedral (CST) elements, and (ii) 2-node Timoshenko beam elements. For a CST mesh,
maximum element edge length of 𝑤∕8 (see Fig. 3) is enforced for reasons of accuracy, and an isotropic linear elastic material

s assumed with Young modulus 𝐸 and Poisson ratio 𝜈 = 1∕3. The (consistent) mass matrix 𝑴 is based on a homogeneous
mass density 𝜌. While this solid discretization is highly accurate and especially used for Bloch wave analysis in the following,
it becomes prohibitively expensive for discrete numerical calculations on large trusses. Therefore, we also use a Timoshenko beam
representation, using 20 beam elements per length 𝐿 (see Fig. 3). Beam elements use the same linear elastic constitutive law (Young’s
modulus 𝐸) and mass density 𝜌, and a shear coefficient (Cowper, 1966) of

𝜅𝑜 =
10(1 + 𝜈)
12 + 11𝜈

(19)

with Poisson’s ratio 𝜈 = 1∕3. The choice of the shear coefficient is not unique (Kaneko, 1975). While (19) is generally accepted as
applicable to most static applications, among others Hutchinson (1981) reported that it depends on the wave frequency 𝜔 when used
in a dynamic setting, so the static shear coefficient 𝜅𝑜 is only applicable at low frequencies. Le (1999) introduced shear coefficients
for dynamic analysis. However, as those require careful tuning and our focus is on the lowest eigenmodes only, we accept possible
inaccuracies at high frequencies (which will become apparent from comparison to the fully resolved solid element discretization).
Note also that beam elements cannot properly capture the mechanics of beam junctions (Portela et al., 2018) – an effect that increases
with decreasing beam slenderness 𝐿∕ℎ. As we here deal with beams of moderate slenderness 𝐿∕ℎ ≥ 5, the effect is expected to be
small. For simulations with both types of FE discretizations, we use the material properties in Table 1 for aluminum alloy 6061-T6,
which is used in our experiments. (Note that all reported normalized data do not depend on the specific values of 𝐸 and 𝜌.)

5. Results

In the following, we first investigate wave dispersion in two periodic lattices with different unit cell aspect ratios (comparing
experimental data to simulation results and thus validating the results from Bloch wave analysis as well as demonstrating the
experimental extraction of dispersion surfaces), before examining the case of a spatially graded lattice.

5.1. Square lattice

For the square lattice with an aspect ratio of 𝛾 = 1, the calculated (normalized) dispersion relation 𝑓 (𝒌) within the First Brillouin
Zone is illustrated in Fig. 4. Shown are the lowest three out-of-plane modes (obtained from simulations using Timoshenko beam
elements). Different modes are indicated by different colors. The modes span all frequencies from 𝑓 = 0 to 𝑓 = 0.223, so that no full
bandgap exists in this frequency range.

For the four representative frequencies of 𝑓 = {0.05, 0.1, 0.15, 0.2}, Fig. 5 illustrates the numerically predicted isofrequency
contours of the dispersion relations (i.e., slices through the dispersion surfaces at the four given frequencies, as shown in Fig. 4)
together with the power spectral density from experiments. Numerical predictions are shown as lines, experimental data as
background contours, from which the relevant modes become visible as intensity maxima. Overall, experiment and simulation are in
excellent agreement: for all three modes, the power spectral density exhibits largest amplitudes in 𝒌-space exactly where the modes
8
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Fig. 4. Dispersion surfaces 𝑓 (𝒌) = 𝜔(𝒌)𝐿∕(2𝜋𝑐) of the three lowest out-of-plane modes in a square lattice (i. e., 𝛾 = 1) in the FBZ. Each mode is assigned a distinct
color. We indicate four horizontal iso-frequency slices at (a) 𝑓 = 0.05, (b) 𝑓 = 0.1, (c) 𝑓 = 0.15, and (d) 𝑓 = 0.2. The high-symmetry path 𝛤 -X-S-Y is indicated
by dashed lines. All dispersion surfaces were calculated using Timoshenko beam elements.

are expected. A complete scan through the dispersion surfaces across the full investigated frequency range, comparing theoretical
predictions to experimental data, is available in Supplementary Video 1.

In addition to slicing through 𝒌-space, we cut through frequency space following the classical high-symmetry 𝒌-path for
rectangular lattices (𝛤 -X-S-Y, indicated by the dashed box in Fig. 4). Numerical and experimental results are compared in Fig. 6.
Besides the numerical predictions based on Timoshenko beam theory (solid lines), we here include the results of a fully discretized
finite element model using solid tetrahedral elements (indicated by triangular markers). Again, an excellent agreement between
experimental and numerical results is confirmed, as already seen from the slices through 𝒌-space. While the fully resolved
FE simulations are in almost perfect agreement with experiments, the predictions based on Timoshenko beam theory tend to
underestimate 𝑓 for given 𝒌. These deviations are negligible for low frequencies but can become significant with increasing frequency
𝑓 . This observation is in line with earlier work of Hutchinson (1981), who found that the chosen shear correction factor (19) tends to
underestimate the natural frequency of beams. In addition to this quantitative discrepancy between the models, we note a qualitative
difference for higher frequencies, manifesting in a noticeably different gradient of the third mode for 𝑓 > 0.225. This will become
important when interpreting the group velocity plots later.

For completeness and for an intuitive representation of the directionality of wave motion, we also compute a group velocity map
for the square lattice by differentiating the dispersion surfaces in Fig. 4 and including all modes that have relevance for 𝑓 ≤ 0.25
(which includes the lowest four modes). The resulting group velocity map is shown in Fig. 7, highlighting the group velocity (by
the color code) for any orientation in the 2D plane as well as for any frequency up to 𝑓 = 0.25 (rays in the polar plot correspond to
constant orientations, while a circle of constant radius corresponds to a fixed frequency). By symmetry, plots for the square lattice
are invariant to rotations of 90◦, so that the full map (on the left) can be constructed from only a single quadrant (shown on the
right for each of the four lowest modes). When two modes overlap in a frequency band, the wave may travel with both modes at
different speeds. In experiments, the faster mode will arrive first and is hence observed as the effective group velocity. We therefore
combine the information of all relevant modes up to the cut-off frequency 𝑓 = 0.25 by presenting the maximum group velocity at
each point, which is shown on the left in Fig. 7. This group velocity map admits an intuitive understanding of the effective transient
wave dispersion in the square lattice for a given direction and frequency. For example, when waves move in the vertical direction
(under 90◦ and 270◦), the strong differences in color at different frequencies imply significantly different speeds at which energy
9
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Fig. 5. Isofrequency contours of the dispersion surfaces of the square lattice with an aspect ratio of 𝛾 = 1. Red, green, and blue lines indicate, respectively, the
first, second, and third mode, as calculated from Timoshenko beam theory and presented in Fig. 4. The background color shows the experimentally determined
power spectral density in a finite periodic square lattice.

flows during wave motion (e.g., compare the low group velocity at 𝑓 = 0.05 to the one at 𝑓 = 0.175). In the long-wavelength limit
of low frequencies, the group velocity is isotropic and waves are expected to spread radially. With increasing frequency, directional
wave dispersion becomes apparent from the direction-dependent group velocity – leading to strong anisotropy in wave motion,
despite the absence of bandgaps (Zelhofer and Kochmann, 2017; Rosi and Auffray, 2016).

5.2. Rectangular lattice

As a second example, we analyze the rectangular lattice with an aspect ratio of 𝛾 = 2. Applying the same numerical and
experimental protocols as before yields the four isofrequency slices through 𝒌-space shown in Fig. 8. For frequencies 𝑓 ≤ 0.15,
we observe five out-of-plane modes indicated by different colors. Like for the square lattice, the numerical predictions based on
Timoshenko beam theory and the peaks in power spectral density from experiments agree well for the four shown slices. Fig. 9
shows the analogous information along the high-symmetry 𝒌-path 𝛤 -X-S-Y-𝛤 for 𝑓 ≤ 0.25.

In contrast to the square lattice with three relevant modes, at least five modes are relevant for wave dispersion in the rectangular
lattice with an aspect ratio of 𝛾 = 2. As before, Fig. 9 shows excellent agreement between model predictions and experiments for
the lowest three modes at frequencies 𝑓 ≤ 0.1. For higher modes and frequencies, however, we observe increasing disagreement.
First, the results based on Timoshenko beam theory show increasing deviations from experiments, which can in part be attributed
to the shear correction factor (Hutchinson, 1981), as discussed before. In addition, some modes are only visible for a fraction of
the high-symmetry 𝒌-path – both in experiments and in the numerical results based on fully-resolved FE. This is a consequence of
only capturing out-of-plane modes with our analysis. In fact, the location along the 𝒌-path where a mode disappears depends on the
threshold defined to differentiate between in-plane and out-of-plane modes (Eq. (16)). Hence, a disappearing mode indicates that
the mode transitions from out-of-plane to in-plane. The results based on Timoshenko beam theory do not capture this behavior, as
10
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Fig. 6. Dispersion relations along the high-symmetry path 𝛤 -X-S-Y-𝛤 of the square unit cell with 𝛾 = 1. All out-of plane modes up to 𝑓𝐿∕𝑐 < 0.25 are shown.
Solid lines show the computed dispersion relations based on Timoshenko beam elements, triangular markers were obtained from solid (constant-strain triangular)
finite elements. The background color code indicates the experimentally determined power spectral density.

Fig. 7. Group velocity map for the square lattice with an aspect ratio of 𝛾 = 1 for all frequencies 𝑓𝐿∕𝑐 < 0.25, which is constructed from the lowest four
out-of-plane modes (a-d). All plots are based on Timoshenko beam theory, showing the maximum group velocity for each combination of frequency and
direction.

the affected modes continue as out-of-plane modes (but thereby miss to capture physical reality, as the experiments mainly confirm
the fully-resolved FE predictions).

A group velocity plot for the FBZ (acknowledging symmetry and presenting only the first quadrant) is shown in Fig. 15(f). This
group velocity plot includes white regions, which are frequency bands in which none of the involved dispersion surfaces offers a
mode for a wave to travel at given frequency and direction. If a white domain extends around the entire polar plot (i.e., appears for
all angles), then it represents a full stop band. For the rectangular lattice with 𝛾 = 2, four separated bandgaps appear for 𝑓 < 0.25,
none presenting a full bandgap but all extending over ranges of directions. These ‘‘directional stop bands’’ imply no wave motion in
particular directions at the respective frequencies. For example, waves traveling in the vertical direction (at 90◦) are attenuated in
two frequency bands: one appearing at low frequencies (around 𝑓 = 0.02) and a second at higher frequencies (around 𝑓 = 0.17), as
seen in Fig. 15(f). In addition, the plotted range of frequencies overall shows strong differences in group velocity.
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Fig. 8. Isofrequency contours of the dispersion surfaces of the rectangular lattice with aspect ratio 𝛾 = 2. Differently colored lines indicate the different modes, as
calculated from Timoshenko beam theory. The background color shows the experimentally determined power spectral density in a finite periodic square lattice.

Fig. 9. Dispersion relations along the high-symmetry path 𝛤 -X-S-Y-𝛤 of the rectangular unit cell with aspect ratio 𝛾 = 2.0. Solid lines and triangles represent,
respectively, results obtained from Timoshenko beam theory and fully resolved FE analysis. The experimental signal strength is shown by the background color
scheme.

For the discussion of spatially graded lattices in the following, Figs. 14 and 15 in Appendix B illustrate the group velocity plots
for various rectangular unit cells of different aspect ratios 𝛾, clearly showing how bandgaps and the associate directionality of wave
motion change with aspect ratio 𝛾.
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Fig. 10. Variation of the frequency interval (in blue) covered by the lowest two directional stop bands in the vertical direction (under an angle of 90◦) versus
the unit cell aspect ratio 𝛾 of rectangular unit cells. When a wave experiences all of those bandgaps in a spatially graded lattice, the resulting wave motion is
expected to be attenuated by all those bandgaps, resulting in the effective, combined stop bands highlighted in red.

5.3. Spatially graded lattice

Having seen the influence of the unit cell aspect ratio 𝛾 on the wave dispersion in periodic lattices, we now utilize that
directionality information (contained in the group velocity maps of Figs. 14 and 15 in Appendix C) to predict the effective wave
propagation in a spatially graded lattice.

We consider a truss lattice that is spatially graded with a changing aspect ratio 𝛾 in the vertical direction, as shown in Fig. 2.
Consequently, waves moving in the vertical direction experience all aspect ratios contained in the lattice, which is why we are
primarily concerned with directional stop bands under an angle of 𝜃 = 90◦ (or, equivalently, 𝜃 = 270◦). Identifying all stop bands in
this direction from the group velocity maps in Figs. 14 and 15 in Appendix C results in the summary plot in Fig. 10, which highlights
in blue, for each value of 𝛾, the frequency range covered by the lowest two directional stop bands in the 90◦-direction. These stop
bands are continuously varying with 𝛾. As a consequence, in the spatially varying lattice of Fig. 2, where the aspect ratio changes
gradually from 𝛾 = 1 at the origin to 𝛾 = 2 at the top and bottom, we expect waves traveling in the vertical direction to experience
the superposition of all those bandgaps. This results in an effective bandgap of the graded lattice spanning the all frequency ranges
highlighted in red in Fig. 10, which were obtained by combining the local bandgaps. Of course, this conclusion is based on the
assumption that the local dispersion relations (obtained from Bloch wave analysis on an infinite periodic lattice) are meaningful
also in a spatially graded lattice. This is usually the case if the spatial grading is sufficiently smooth (Dorn and Kochmann, 2022,
2023a), so that the wave locally still interacts with an approximately periodic lattice.

To demonstrate the combined attenuation effect, we performed transient simulations on the spatially graded lattice. The resulting
maximum wave velocities during simulations are summarized in Figs. 16 and 17 in Appendix C. For each frequency, the onset of
the theoretical combined stop band is indicated by a dashed line. (Simulation end times were chosen such that boundary reflections
are avoided and only the transient wave is visible.) Results illustrate that waves are indeed attenuated in the vertical direction
approximately where expected from the local dispersion relations.

To obtain experimental data for comparison, the center node of a spatially graded lattice was excited at different harmonic
excitation frequencies inside and outside of the red domains in Fig. 10. Fully-resolved particle velocity measurements (as detailed
in Section 3) were conducted. As it is difficult to apply a harmonic excitation with a single frequency due to the transient nature in
the ramp up of any excitation, we applied the same frequency chirps shown in Fig. 12 (a snapshot of the particle velocity at 𝑡 = 150
is shown in Fig. 13(c)). As the Brillouin zone – unlike for the previously studied periodic lattices – loses its meaning for the graded
lattice, we perform the Fourier transform only in time and present the power spectral density along the vertical 𝑦-axis.

The thus-obtained data, summarized via the spectral intensity in Fig. 11, shows that the transient wave is indeed strongly
attenuated in the expected regions (the theoretically predicted local stop bands and the resulting effective stop band in the
vertical direction of wave motion are included as shaded and hatched regions, respectively). Hence, the graded lattice does
effectively combine the directional local stop bands of the different rectangular unit cells into an effective stop band over a broad
frequency range. Consequently, the energy of the input chirp focuses in a frequency band between the two effective stop bands
(the resulting wedge in frequency-aspect ratio space is also referred to as metawedge in photonics (Tsakmakidis et al., 2007)). In
this domain we observe a growth in signal strength by several orders of magnitude, which effectively demonstrates ultrasonic
rainbow trapping (Tsakmakidis et al., 2007) of mechanical out-of-plane waves in the spatially graded truss lattice. Trainiti et al.
(2017) observed analogous behavior when studying in-plane waves in a 3D-printed polymeric structure with graded undulations,
whereas Aguzzi et al. (2022) added point masses to add grading to a structure, resulting in wave filtering. By contrast, the metallic
truss lattice samples used here are easy to fabricate and to deploy. They come with minimal material-intrinsic damping, which
admits approximately linear elastic wave motion and excellent agreement with numerical predictions of the wave attenuation
13
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Fig. 11. Experiment vs. theory: wave attenuation in a spatially graded lattice with varying aspect ratio 𝛾 of the rectangular unit cell in the vertical 𝑦-direction
(Fig. 2). The wave attenuation is obtained by normalizing the time Fourier amplitudes at each 𝑦-location with the excitation signal at the origin. The theoretically
expected stop bands from Bloch wave analysis are overlaid as shaded regions, resulting in the combined, effective stop bands shown by the hatched regions. The
wave propagation is attenuated at different 𝛾-values in agreement with the local stop bands. Overall, two effective bandgaps are visible, so that waves propagate
primarily in the two (yellow) wedges outside those frequency ranges.

in the graded structure (see Appendix C). We further focused on out-of-plane vibrations, which present a frequent load case in,
e.g., micro- and nano-electromechanical systems and operate generally at lower frequencies than in-plane modes, which is beneficial
for miniaturization.

6. Conclusion

Truss lattices are excellent mechanical wave guides, whose dispersion relations can be controlled through the unit cell
architecture and utilized to purposefully attenuate or steer stress waves. Our experiments on laser-cut 2D metallic trusses with
varying unit cell geometries, characterized in-situ by laser Doppler velocimetry and combined with a Fourier-based data analysis
protocol, allowed for the experimental measurement of complete dispersion surfaces of the lowest modes – going beyond many prior
studies that were limited to verifying the existence of bandgaps through confirming reduced wave transmissibility or focusing on
particular paths in 𝒌-space. Moreover, experimental findings were shown to be in excellent agreement with finite element predictions
based on Bloch wave analysis. Our experiments confirmed that, while Timoshenko beam theory is suitable for the lowest few modes
and at low frequencies, it fails to accurately predict the dispersion relations at higher frequencies – unlike fully-resolved finite
element simulations based on solid elements, which provide accurate predictions in this study. Going beyond periodic trusses,
we analyzed a spatially graded design, in which the unit cell’s aspect ratio continuously changes to create a phononic bandgap
across a wide frequency range. Experiments on a graded sample confirmed the predictions made by ‘‘stacking’’ the local dispersion
relations of individual unit cells, thus demonstrating the validity of the (locally periodic) dispersion relations if the spatial grading is
sufficiently smooth. The two observed wedges forced the wave energy to focus in a frequency band between the wedges, resulting in
strongly increased amplitudes observed within this frequency band. This proves the emergence of ‘broadband rainbow trapping’ of
mechanical waves in truss lattices undergoing out-of-plane vibrational motion. While all effects can be scaled to different frequency
domains (the reported phenomena are scale-independent), experiments were conducted at ultrasound frequencies with potential
applications, e.g., in the medical sector. Moreover, the out-of-plane mode of excitation – along with the simple unit cell design –
bears potential for miniaturization as well as for applications from wave guidance and energy harvesting to vibration control in
micro- and nanomechanical systems.
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Appendix A. Frequency chirp signals and raw velocity field data

This appendix illustrates representative experimental data. Fig. 12 presents the linear frequency chirp signal applied to samples
and measured at the center node of the lattice, shown both in the time domain and in the frequency domain. Three different
frequency chirps were used to span a wide frequency range in experiments, thus covering the full range of frequencies of interest.
To illustrate the measured response of the truss lattice, Fig. 13 shows the raw velocity field data obtained from three different 2D
truss lattices: a square lattice with aspect ratio 𝛾 = 1, a rectangular lattice with an aspect ratio of 𝛾 = 2, and the spatially graded
lattice of Fig. 2, whose aspect ratio varies between 𝛾 = 1 and 𝛾 = 2 from the center towards the top and bottom. All data were taken
at 𝑡 = 150 μs after the onset of excitation; the raw out-of-plane velocity data are shown by the color code.

Fig. 12. Linear frequency chirp signal measured at the center node in (a) the time domain and (b) the frequency domain. Three different frequency chirps were
used to span a wide frequency domain.
15

Fig. 13. Raw velocity fields at 𝑡 = 150 μs for periodic truss lattices with aspect ratios (a) 𝛾 = 1 and (b) 𝛾 = 2, and (c) the spatially graded lattice with 𝛾 ranging
from center to top and bottom from 1 to 2, respectively.
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Appendix B. Group velocity of out-of-plane modes for 𝟏.𝟎 ≥ 𝜸 ≥ 𝟐.𝟎

Group velocity maps of the out-of-plane modes for rectangular unit cells with aspect ratios 1.0 ≤ 𝛾 ≤ 2.0 are shown in Figs. 14
and 15.

Fig. 14. Group velocity maps of the out-of-plane modes for rectangular unit cells with aspect ratios 1.0 ≤ 𝛾 ≤ 1.5.
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Fig. 15. Group velocity maps of the out-of-plane modes for rectangular unit cells with aspect ratios 1.5 ≤ 𝛾 ≤ 2.0.
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Appendix C. Maximum out-of-plane velocity in a square lattice

Profiles of the maximum out-of-plane velocity in a spatially graded lattice, as obtained from simulations based on Timoshenko
beam elements are shown in Figs. 16 and 17. Red boxes indicate those unit cells that fall into a local stop band, based on Bloch
theory predictions.

Fig. 16. Maximum out-of-plane velocity in a spatially graded lattice, as obtained from simulations based on Timoshenko beam elements. Red boxes indicate
those unit cells that fall into a local stop band, based on Bloch theory predictions.
18
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Fig. 17. Maximum out-of-plane velocity in a spatially graded lattice, as obtained from simulations based on Timoshenko beam elements. Red boxes indicate
those unit cells that fall into a local stop band, based on Bloch theory predictions.

Appendix D. Supplementary data

Supplementary material related to this article can be found online at https://doi.org/10.1016/j.jmps.2024.105762.
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