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ABSTRACT

We present a framework for the inverse design of spatially graded phononic materials based on ray tracing. Spatial grading of phononic
materials allows the unit cell to vary smoothly in space. Compared to periodic architectures, spatial grading opens up a vast design space
that promises new capabilities for manipulating elastic and acoustic waves. However, the use of spatial grading to control wave propagation
has been limited to simple gradings, largely due to the bottleneck of modeling efficiency, and to the long-wavelength limit of low frequen-
cies. In this work, ray tracing is exploited as an efficient alternative, around which we develop an optimization framework based on the
adjoint state method toward the flexible inverse design of graded phononic materials. We demonstrate the design of graded mass-spring net-
works for objectives including focusing all directions of a point source, broadband focusing of a plane wave, and frequency sorting. These
objectives are out of reach of periodic phononic materials, highlighting the high potential of spatially graded phononic materials. Moreover,
our results demonstrate the importance of wave dispersion, which is classically neglected in the long-wavelength limit of elastodynamics.

© 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0176704

I. INTRODUCTION

Periodic media exhibit remarkable dynamic properties includ-
ing their ability to attenuate and guide waves. Phononic materials
exploit periodic microstructure to control elastic and acoustic waves
through the choice of the underlying unit cell.1 Extensive research
has focused on the design of phononic (meta-)materials with peri-
odic architectures, aimed at optimizing a unit cell to have desirable
wave propagation behavior (e.g., wide partial or full bandgaps).2–4

Compared to periodic architectures, spatially graded phononic
materials (with unit cells that smoothly vary in space) have a con-
siderably larger design space. As they locally resemble periodic
media, graded architectures locally exhibit attenuation capabilities
and extreme directionality, which allows for much richer wave
manipulation than in periodic architectures. Despite this opportu-
nity, significantly less work has focused on understanding and
exploiting spatially graded phononic materials.

Past work exploring spatially graded phononic materials has
been limited to restricted design spaces, such as linear grading,5–7

analytical solutions (e.g., Luneburg lenses8 and hyperbolic secant
profiles9,10), and conformal mappings.11 Within these restricted
design spaces, fascinating wave physics has been demonstrated such

as rainbow trapping,12 wave focusing,13 and low-pass wave attenua-
tion.11 However, the bottleneck of computation has prevented sys-
tematic exploration of the vast spatial grading design space for
wave manipulation.

A major barrier to exploiting spatial grading is the computa-
tional expense of forward modeling. Periodic media benefit from
Bloch wave analysis, allowing only single unit cell to be modeled,
which does not directly apply to graded media. In the long-
wavelength limit, homogenization admits the efficient modeling of
(locally) periodic media as effective continua, which has driven an
extensive literature of transformation-based design in acoustic and
elastic metamaterials.14–18 However, this body of work has been
restricted to wave propagation in the long-wavelength limit. Beyond
this homogenization limit, rich dispersive phenomena arise from
waves interacting with the structure of the unit cells, which has
remained widely unexplored. Direct numerical simulations (e.g.,
using finite element analysis) provide accurate models in this
regime but are prohibitively inefficient for the inverse design since
short length and time scales must be captured.

To fill this gap in modeling techniques, we previously devel-
oped ray theory in the context of spatially graded metamaterials,19
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which generalized well-developed ray theories for “locally homoge-
neous” media20 to the “locally periodic” setting, where dispersion
due to the microstructure is captured. Based on local dispersion
relations determined by the unit cell at a given location, ray tracing
offers efficient approximate solutions for high-frequency/short-
wavelength propagation (where the wavelength is assumed to be
much shorter than the length scale of spatial grading).

Due to its efficiency and simplicity, ray tracing has been a
workhorse for inverse problems in a wide range of fields from
optical design21,22 to seismic imaging23 to x-ray tomography.24 In
this work, we develop ray-tracing-based inverse design in the new
context of spatially graded phononic materials (in the dispersive,
short-wavelength setting). We take inspiration from recent work on
the optimal design of (non-dispersive) gradient-index optics,25

which uses the adjoint state method to perform differentiable ray
tracing and to enable gradient-based optimal design. In the disper-
sive setting, we derive a procedure for computing the gradient of a
cost function that depends on ray trajectories. This provides a flexi-
ble setting for optimal phononic material design problems to be
solved efficiently.

Using this inverse design framework, we explore the interest-
ing physics enabled by an arbitrary spatial grading of phononic
materials. To represent a generic phononic material, we investigate
a two-dimensional (2D) mass-spring network with spatially graded
mass and spring stiffness. Through our optimization framework,
we demonstrate extensive control over wave propagation. As an
example, grading can be designed to focus nearly all directions of a
wave emanating from a point source at a desired location.
Broadband focusing of a plane wave as well as sorting frequencies
of a plane wave to different locations are also demonstrated.
Overall, the proposed methodology enables exploring the vast
design space of graded phononic materials and the intriguing wave
phenomena it offers.

II. FORWARD MODELING

We begin by briefly reviewing the method of ray tracing to
solve the forward problem of how a wave propagates in a given
graded phononic material. Additionally, we present an example of
forward modeling based on ray tracing in the context of a graded
mass-spring network.

A. Ray tracing in phononic materials

The underlying approximation is local periodicity: if the
grading is sufficiently slow, the material is nearly periodic in the
local neighborhood of each unit cell, so it is assumed that the local
dispersion relations are valid in that neighborhood. The medium is
consequently treated as a continuum described at each point by its
local dispersion relations. The local dispersion relations of a partic-
ular unit cell are obtained from Bloch wave analysis, as if that unit
cell belonged to an infinite periodic lattice. Thus, the local disper-
sion relation takes the form ω ¼ ω(k, x), relating the eigenfre-
quency ω to the wave vector k [ Rd at a given spatial location
x [ Rd (where d is the spatial dimension).

We consider dispersive wave propagation, where the
group velocity v ¼ @ω

@k varies with frequency. In contrast, waves are

non-dispersive when the group velocity equals the phase velocity
vp ¼ ω

k k̂ (where k and k̂ are, respectively, the magnitude and direc-
tion of the wave vector), which occurs in the low-frequency limit.

Given the local dispersion relations, wave propagation is effi-
ciently modeled by ray tracing. The ray tracing equations, which are
a system of first-order ordinary differential equations, take the form

_x ¼ @ω

@k
, (1)

_k ¼ � @ω

@x
, (2)

where dots denote derivatives with respect to time t of the ray trajec-
tory x(t) and the wave vector k(t) along the ray. Equation (1) states
that the group velocity is tangent to the ray trajectory, while Eq. (2)
states that the wave vector evolves along the ray due to the spatial
variation in the local dispersion relations. Given initial conditions
x0 ¼ x(t ¼ 0) and k0 ¼ k(t ¼ 0), the ray tracing system can be
solved as an initial value problem, providing an efficient solution to
the forward problem.

For a general derivation of ray theory for linear elastic waves
in locally periodic media, see Ref. 19 (which also extends to acous-
tic waves as a special case of elasticity).

B. Mass-spring network example

As a prototypical phononic material, we study an infinite 2D
mass-spring network throughout this paper. The mass-spring
network consists of a 2D square grid of masses m connected by
linear elastic springs in the horizontal and vertical directions with
stiffness Kx and Ky , respectively, as shown in Fig. 1. The spacing

FIG. 1. Mass-spring network in 2D (particles of identical mass m are connected
by elastic springs of stiffness Kx and Ky ).
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between masses in the horizontal and vertical directions is a. Each
mass has only one degree of freedom, the out-of-plane displace-
ment u, and the spring forces are proportional to the relative
out-of-plane displacements of adjacent masses. This mass-spring
network provides a simple setting that is commonly used for
understanding waves in 2D phononic media.1,26

The equation of motion of the mass at point (i, j) takes the
form

m€ui,j þ 2(Kx þ Ky)ui,j � Kx ui�1,j þ uiþ1,j
� �

� Ky ui,j�1 þ ui,jþ1
� � ¼ 0: (3)

For a periodic network, a unit cell consists of a single mass, and
the corresponding dispersion relation follows as:1

ω ¼
ffiffiffiffi
2
m

r h
Kx þ Ky � Kxcos(akx)� Kycos(aky)

i1
2
, (4)

where kx and ky are, respectively, the x- and y-components of the
wave vector. For a graded network (with spatially varying mass or
stiffness values), (4) represents the local dispersion relation when
evaluated with the local unit cell’s properties.

To exemplify ray tracing for the forward modeling of wave
propagation, we consider spatial grading of the mass m. An arbi-
trary spatial grading of mass is taken to be
m ¼ 0:5m0sin(0:1x=aþ 0:05y=a)þm0. The stiffness of all springs
is taken as Kx ¼ Ky ¼ K0. A harmonic displacement excitation of
frequency ωf ¼ 1:75ω0 and magnitude û is applied to the mass at

the origin, where the frequency is normalized by ω0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K0=m0

p
.

Figure 2(a) shows the local dispersion at the excitation location.
To model the wave emanating from the point source, ray

tracing is performed by solving Eqs. (1) and (2). The initial posi-
tion x0 of each ray is the location of the point source, here the
origin. The initial wave vector k0 must lie on the ωf ¼ 1:75=ω0

level set of the dispersion surface at the excitation location, which

is highlighted in Fig. 2(a). To capture waves propagating in all
directions from the point source, 100 rays are traced with initial
wave vectors densely sampling the excitation frequency level set.
The resulting ray trajectories until time t ¼ 47=ω0 are plotted in
Fig. 2(b).

As a reference, a transient simulation is performed by numeri-
cally solving the equation of motion, Eq. (3), on a finite domain. A
harmonic displacement excitation at frequency ωf is applied at the
origin, and the domain is chosen sufficiently large such that the
wave does not reach the boundary by t ¼ 47=ω0, when the simula-
tion is stopped. Figure 2(c) shows the thus-obtained maximum dis-
placement amplitude throughout the mass-spring network during
the simulation. The ray trajectories of Fig. 2(b) clearly align with
the regions of high amplitude in Fig. 2(c). Thus, ray tracing pro-
vides an accurate and efficient method for modeling wave propaga-
tion in this graded phononic material.

It is also possible to compute displacement amplitudes along
each ray in the forward modeling process.19 However, accounting
for ray amplitudes in inverse problems (which has been well
studied in seismology27) adds significant complexity, which is why
we restrict this paper to considering ray trajectories only.

III. INVERSE DESIGN FRAMEWORK

We aim to solve the inverse problem of designing a phononic
material that achieves desired wave propagation behavior (e.g.,
focusing a wave at a prescribed point). This inverse design chal-
lenge is formulated as an optimization problem, whose cost func-
tion requires evaluating the forward problem. Ray tracing provides
an efficient and differentiable means of solving the forward
problem. To enable gradient-based optimization, we obtain the cost
function gradient using the adjoint state method.

While the focus of this study is on phononic materials, we for-
mulate the inverse design framework in terms of an arbitrary dis-
persion relation. Thus, it applies generally to the wide range of
fields where ray theory is valid.

FIG. 2. Example of forward modeling of wave propagation in a graded mass-spring network. (a) Local dispersion relation at the excitation location with the plane corre-
sponding to the excitation frequency ωf ¼ 1:75ω0 highlighted. (b) Ray trajectories at time t ¼ 47=ω0. (c) Maximum displacement amplitude in a transient simulation of a
finite mass-spring network.
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A. Problem definition

Using ray tracing as a basis for the inverse design problem, we
seek to prescribe the behavior of ray trajectories. Specifically, we
pursue solutions where the trajectory of ray r, which starts at point
x0r , passes through a prescribed point x̂r . This objective can be
achieved by minimizing a cost function for ray r of the form

cr ¼ (w*
r � ŵ)

2
, where R̂ and ŵ are the polar coordinates of x̂ with

respect to x0r (see Fig. 3). Point x*r is defined as the point at which
ray r reaches a distance of R̂ from point x0r , and the angular coor-
dinate of x*r with respect to x0 is denoted w*

r . The time t*r is the
time at which the ray reaches the distance R̂ from its starting point,
such that x*r ¼ xr(t*). Figure 3 illustrates this objective for two rays
i and j.

To achieve a solution that minimizes the cost function, we
pose an optimization problem over a set of design variables that are
summarized in a vector θ [ RN . The design variables contain N
material or geometric parameters of unit cells. In the context of the
mass-spring network of Fig. 1, θ could contain, e.g., Kx , Ky , and m
of individual unit cells.

The inverse design problem is cast as an optimization
problem of the form

minθ C(θ) subject to
_xr ¼ @ω

@k , t [ [0, t*r ], r ¼ 1, . . . , nr ,
_kr ¼ � @ω

@x , t [ [0, t*r ], r ¼ 1, . . . , nr ,
Gr(x*r) ¼ 0, r ¼ 1, . . . , nr ,

(5)

where the overall cost function C is the sum of functions cr

associated with the individual rays,

C(θ) ¼
Xnr
r¼1

cr(x
*
r(θ)), (6)

and nr is the number of rays. Each ray’s cost function depends on θ
only through the trajectory of ray r at time t*, denoted
x*r(θ) ¼ xr(θ, t*). The ray tracing Eqs. (1) and (2) are treated as
constraints, enforcing that the ray trajectories are solutions to the
forward problem.

The last constraint in Eq. (5) arises because the end time t*r
depends on the design variables. Specifically, we take Gr as the
signed distance function from the ray r to the circle centered at x0
with radius R̂, so that Gr ¼ 0 enforces that time t*r corresponds to
when ray r passes through this circle. (Alternatively, one could pre-
scribe t* for each ray and omit the third constraint, which leads to
a more restrictive design problem).

To solve this optimization problem using gradient-based algo-
rithms, the total derivative of the cost function with respect to the
design variables, dC

dθ, is required. Obtaining this derivative is chal-
lenging since it is not explicitly available. That is, computing it
through the chain rule requires dx*

dθ (the sensitivity of a ray’s trajec-
tory due to a design perturbation), which cannot be obtained ana-
lytically. Of course, finite difference schemes are capable of
approximating dx*

dθ , but become prohibitively expensive to compute
if there are many design variables, which is the case for the prob-
lems we address. To efficiently compute the cost function gradient,
we employ the adjoint state method.

B. The adjoint state method

The adjoint state method is a general approach for computing
gradients for optimization problems constrained by differential
equations.28 For decades, it has been a useful tool for solving
inverse problems,29 with applications in a range of fields including
seismology,30 optics,31 and control systems.32 Recently, it was devel-
oped for the inverse design of (non-dispersive) gradient-index
optics in the context of ray tracing.25 Here, we generalize the for-
mulation of Teh et al.25 to apply to dispersive waves. For clarity, we
formulate this section and the following Sec. III C for an individual
ray and omit subscripts to identify a particular ray.

The adjoint state method relies on Lagrange multipliers to
compute the cost function gradient. Let λ [ Rd and μ [ Rd be the
Lagrange multipliers associated with Eqs. (1) and (2), respectively.
Thus, λ and μ are time-dependent, varying along a ray. In addition,
the Lagrange multiplier ρ is introduced to enforce the third con-
straint of Eq. (5). We define the vector p(θ, t) containing the state
variables x and k, and the vector Λ(θ, t) containing the Lagrange
multipliers λ and μ as

p ¼ x
k

� �
, Λ ¼ λ

μ

� �
: (7)

FIG. 3. The cost functions for rays i and j are ci ¼ (w�
i � ŵ)2 and

cj ¼ (w�
j � ŵ)2, respectively. Minimizing the cost function aims to steer each

ray, emanating from x0, through the prescribed point x̂ at a distance R̂.

Journal of
Applied Physics

ARTICLE pubs.aip.org/aip/jap

J. Appl. Phys. 134, 195103 (2023); doi: 10.1063/5.0176704 134, 195103-4

© Author(s) 2023

 15 N
ovem

ber 2023 11:47:10

https://pubs.aip.org/aip/jap


The Lagrangian takes the form

L θ, p, Λ, ρ, t*
� � ¼ C �

ðt*
0
Λ

T
Sdt � ρG, (8)

where

S ¼ _x � @ω
@k

_k þ @ω
@x

" #
: (9)

Note that the variables p, Λ, ρ, and t* all depend on θ.
The adjoint state method proceeds by requiring stationarity

with respect to all variables except θ. Enforcing stationarity with
respect to Λ returns the ray tracing equations S ¼ 0, requiring p to
trace a ray. Stationarity with respect to ρ enforces the constraint
G ¼ 0, which defines the ray’s end time t*. The adjoint equation
follows from stationarity with respect to p as

δpL ¼ @C
@p*

δp* �
ðt*
0
Λ

T @S
@p

δpdt � ρ
@G

@p
δp ¼ 0: (10)

This is used to solve for the Lagrange multipliers Λ, which will be
discussed in Sec. III C. Finally, stationarity with respect to t* yields

dL
dt*

¼ @C
@x*

@x*

@t
� Λ

T
S

h i
t*
�ρ

@G

@x*
@x*

@t
¼ 0: (11)

Denoting v* as the group velocity at time t* and noting that S ¼ 0,
Eq. (11) is solved for ρ to obtain

ρ ¼
@C
@x* � v*
@G
@x* � v*

: (12)

The quantity @G
@x* is the normal vector to the circle of radius R̂ cen-

tered at x0.
25

After enforcing stationarity with respect to Λ and ρ (which
enforce the constraints) as well as p and t* (which determine the
Lagrange multipliers), the gradient of the cost function with respect
to θ is easily obtained. Since S(p, θ) and G(p) are zero everywhere,
and, therefore, dS

dθ and
dG
dθ vanish, it follows that

dC
dθ

¼ δL

δθ
: (13)

Since the variations of the Lagrangian with respect to all variables
except θ are zero, only one term of δL

δθ survives, which gives

dC
dθ

¼ �
ðt*
0
Λ

T @S
@θ

dt: (14)

Here, the utility of the adjoint state method becomes evident. It
enables the computation of dC

dθ without knowledge of dp
dθ, instead

using the more easily obtained Lagrange multipliers Λ. A procedure
for computing Λ and the cost function gradient is presented in Sec.
IIIC.

C. Gradient computation procedure

In our examples, we define a total of D (material or geometric)
design parameters describing a unit cell, whose spatial distribution
is to be optimized on a regular square n� n grid containing n2

points, with spacing Δ. Vector θ(i) [ Rn2 (where i ¼ 1, . . . , D)
contains the values of the ith design parameter at each of the n2

grid points. The vector containing all design parameters at all grid
points is θ [ RN with N ¼ n2D, which takes the form

θ ¼
..
.

θ(i)

..

.

2
664

3
775: (15)

For example, in the mass-spring network examples of Fig. 1, θ(1)

contains the horizontal and θ(2) the vertical spring stiffness values,
while θ(3) contains the masses, evaluated on a uniform grid and
resulting in a spatially graded lattice, as shown in Fig. 4. This setup
forms the basis for the examples presented in Sec. IV.

Computing the cost function derivative with respect to the
design variables involves three steps. First, the forward ray tracing
problem is solved to compute ray trajectories. Then, the adjoint
equation is solved by tracing backward along the ray to obtain the
Lagrange multipliers. With the ray trajectory and Lagrange multi-
pliers in hand, Eq. (14) is evaluated to obtain the cost function gra-
dient. These steps are illustrated in Fig. 4 for a single ray.

The first step of forward ray tracing is straightforward, as it
involves numerically solving Eqs. (1) and (2) for some initial condi-
tions x0 and k0. Initial conditions of the ray depend on the
problem one aims to solve and remain unchanged throughout the
optimization.

The second step of backward tracing involves numerically
solving a system of first-order differential equations that arises
from the adjoint state equation. In Appendix A, we show that the
adjoint state equation of Eq. (10) is equivalent to the following
system:

_λ ¼ � @2ω

@x@k
λþ @2ω

@x@x
μ, (16)

_μ ¼ � @2ω

@k@k
λþ @2ω

@k@x
μ, (17)

with end conditions at t ¼ t* given by

λ(t*) ¼ @C
@x*

� ρ
@G

@x*
, (18)

μ(t*) ¼ 0: (19)

This system can be solved backward along the ray, starting from
the end conditions at t* and marching toward t ¼ 0 [where ρ is
known from Eq. (12)].
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The final step is to evaluate the gradient of the design vari-
ables. Equation (14) can be rewritten as

dC
dθ

¼ �
ðt*
0

�λ
T @2ω

@k@θ
þ μ

T @2ω

@x@θ

� �
dt: (20)

Once the ray trajectory and Lagrange multipliers are known, this
can be evaluated along each ray to compute the cost function
gradient.

To evaluate the (first and second) derivatives of the dispersion
relations that appear in Eqs. (1), (2), (16), (17), and (20), an inter-
polation scheme is used. Appendix B outlines the computation of
the required dispersion relation derivatives based on the interpo-
lated design parameters.

This three-step procedure is illustrated in Fig. 4 for a single
ray. The first step [Fig. 4(a)] represents the forward problem of
computing ray trajectories x for a given design by solving Eqs. (1)
and (2). The second step [Fig. 4(b)] involves solving the adjoint
system of Eqs. (16) and (17) backward along the ray to obtain the
Lagrange multipliers. Once the Lagrange multipliers are known, the
gradient of the cost function is computed by integrating Eq. (20)
along the ray, which is used to update the design variables
[Fig. 4(c)] through a standard gradient-based nonlinear optimiza-
tion scheme. After updating the design variables, the ray is closer
to satisfying the objective function. This procedure is iteratively
repeated, until convergence is achieved, which is defined as when
the sum of each ray’s cost function becomes smaller than a toler-
ance ε (we used ε ¼ 10�4 in our examples).

Since ray tracing in phononic materials relies on the assump-
tion of local periodicity, and, therefore, of slow spatial grading (rel-
ative to wavelengths of interest), we use regularization to penalize
large spatial derivatives of design parameters. Specifically, we
augment the cost function by a term penalizing the total variation

of each design parameter θ(i), replacing Eq. (6) by

C(θ) ¼
X
r

cr(x
*
r(θ))

þ κ
X
i

X
j,k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(θ(i)j,k � θ(i)jþ1,k)

2 þ (θ(i)j,k � θ(i)j,k�1)
2

r
Δ2,

(21)

where θ(i)j,k is the design parameter evaluated at grid point (j, k) and
κ is a scalar controlling the strength of the regularization term. The
regularization term does not affect the adjoint state formulation,
and the gradient of the regularization term can be directly added to
Eq. (20).

To solve the optimization problem given the cost function gra-
dient, many algorithms are available and the best performing algo-
rithm may be problem-dependent. We found a quasi-Newton
optimizer, specifically the L-BFGS algorithm33 using the NLopt
implementation,34 to perform well. To solve the ray tracing and
backward tracing systems, a third-order Runge–Kutta scheme was
used with a fixed step size to ensure that backward tracing follows
the same steps as forward tracing. A variable-resolution implemen-
tation was used, similar to the methodology of Teh et al.,25 which
involves beginning the optimization on a spatially coarse grid of
design parameters and refining the grid as the optimization pro-
gresses. Starting the optimization on a coarse grid (e.g., a design
variable grid spacing of 16 unit cells, such that Δ ¼ 16a) both
encourages a smooth solution and boosts efficiency compared to
initializing the optimization on a fine grid (a design variable grid
spacing of one unit cell, such that Δ ¼ a).

IV. RESULTS

We demonstrate this inverse design framework in the context
of the mass-spring network of Fig. 1. Three design parameters are
considered: Kx , Ky , and m. In the following examples, we design

FIG. 4. Inverse design procedure. (a) Step 1: forward ray tracing. (b) Step 2: backward tracing to compute the Lagrange multipliers Λ along the ray. (c) Step 3: update
design variables surrounding the ray path using the cost function gradient.
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the spatial distributions of these design variables to optimize a
given cost function. Three examples are presented, which achieve
focusing of a point source, broadband focusing of a plane wave,
and frequency sorting. Optimal designs are validated by compari-
son to transient numerical simulations.

A. Point source focusing

For the first example, we design the mass-spring network to
focus the entire wave emerging from a harmonic point source to a
specified focal point. The point source is located at the origin and
the target focal point has coordinates x̂ ¼ (60a, 0)

T

.
To achieve focusing, we define the cost function as

cr ¼ w*2
r : (22)

The time t*r is defined as the time at which ray r crosses a circle
with radius R̂ ¼ 60a. Minimizing the cost function drives all con-
sidered rays emerging from the point source to cross through the
focal point. At the point source, the mass and stiffness are fixed at
m ¼ m0 and Kx ¼ Ky ¼ K0 to ensure that the initial conditions of
the rays do not change throughout the optimization. The mass and
stiffness of all unit cells on an 160� 160 grid are taken as design
variables, which leads to a total of 76 800 design variables.

The frequency of the harmonic point source is taken to be
1:25ω0 as an example, where ω0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K0=m0

p
. Figure 5(d) plots the

local dispersion relation at the excitation location with the excitation
frequency highlighted. Initial conditions for the wave vector of the
rays emerging from the point source lie on the isofrequency contour
of the dispersion relations at ω ¼ 1:25ω0. We take 84 rays uniformly
spanning all initial directions from the point source, except direc-
tions within +7� from the x-axis (nearly horizontal directions were
found to be numerically problematic, see Sec. IV D).

To ensure reasonable values for the design variables, the nor-
malized design variables Kx=K0, Ky=K0, and m=m0 are restricted to
a lower bound of 0.2 and an upper bound of 2 during the optimiza-
tion. As the initial guess for the optimization, all mass and stiffness
values are taken as Kx ¼ Ky ¼ K0 and m ¼ m0. Based on numeri-
cal experiments, the regularization constant was taken as
κ ¼ 0:001. An analysis of the trade-off between the ray term and
the regularization term in the cost function was not performed,
since the chosen value of κ was found to lead to a global minimiza-
tion of the ray term (i.e.,

P
cr , ε).

The output of the optimization is a spatial distribution of the
design variables, which is plotted in Figs. 5(a)–5(c). Interestingly,
the solution exhibits spatial grading in two design variables, leaving
Kx nearly uniform. However, the solution is not necessarily unique;
this is a non-convex optimization problem and other solutions may

FIG. 5. Point source focusing example. Optimal spatial distributions of (a) Kx , (b) Ky , and (c) m. Local dispersion relation at (d) the excitation point (0,0), (e) the point
(20a, 20a), and (f ) the focal point (60a, 0), where the design frequency is highlighted by the blue planes. These three points are marked with dots in (a)–(c).
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exist with different design variable distributions. To highlight the
variation in local dispersion relations throughout the optimally
graded lattice, Figs. 5(e) and 5(f ) show the local dispersion surface
at the point (x, y) ¼ (20a, 20a) and the focal point, respectively. In
the optimal design, the forcing frequency level set ranges from
being near the low-frequency limit [Fig. 5(d)] to near the top of
the dispersion surface [Fig. 5(e)]—clearly showing that wave disper-
sion must be accounted for.

Ray trajectories corresponding to the optimal design variables
are shown in Fig. 6(a), which all start at the excitation point and
pass through the target focal point. The ray trajectories in Fig. 6(a)
are plotted only until they reach the focal point, though the specific
time at which each ray passes through the focal point is not the
same for all rays. For clarity, only one third of the rays are shown
in Fig. 6(c).

A transient numerical simulation was performed to validate
the optimal solution. The equations of motion, Eq. (3), were solved
numerically on a finite domain with the optimal mass and stiffness
distributions of Figs. 5(a)–5(c). A harmonic displacement excitation
of amplitude û and frequency ω ¼ 1:25ω0 was applied to the mass
at the origin. The simulation was stopped at time t ¼ 165=ω0, and
the simulated domain was sufficiently large so that boundary
effects were avoided. In Fig. 6(b), the maximum displacement of
each mass during the simulation is plotted. It is evident that the ray
paths correspond to the regions of high amplitude in the transient
simulation. A sharp peak in displacement amplitude is observed at
the mass located at the target focal point x̂, which exhibits the
largest displacement amplitude in the entire domain. The
maximum displacement amplitude observed at x̂ is u ¼ 1:08û,
which is higher than the amplitude û at the point source, confirm-
ing that a strong focusing effect is achieved. An animation of the
transient simulation is included in Supplementary Video 1.

B. Broadband plane wave focusing

For the next example, the mass and stiffness distributions are
designed for broadband focusing of an incident plane wave. We
consider a line source along the y-axis from y ¼ �10a to y ¼ 10a,

which generates a plane wave that we aim to focus at the point
x̂ ¼ (50a, 50a)T [see Fig. 7(c)]. To achieve broadband focusing, five
design frequencies are included in the optimization: ω1 ¼ ω0,
ω2 ¼ 1:125ω0, ω3 ¼ 1:25ω0, ω4 ¼ 1:375ω0, and ω5 ¼ 1:5ω0. The
local dispersion relation at the line source is shown in Fig. 7(a)
with the excitation frequencies highlighted. The cost function again
takes the form of Eq. (22) to steer all rays through x̂, where x* is
the ray position at time t*, when the ray crosses a radius of R̂.
Unlike in the previous example, R̂ is different for each ray in this
example since each ray starts at a different location.

In the region x � 0, the mass and stiffness values are fixed at
Kx ¼ Ky ¼ K0 and m ¼ m0 to ensure the initial conditions of the
rays are unchanged throughout the optimization. An initial guess
of uniform mass and stiffness is again used. Twenty rays of each
frequency are taken in the cost function, which have evenly spaced
initial positions from y ¼ �10a to y ¼ 10a. The initial wave vector
for a ray of frequency ωr is determined as the point on the ωr iso-
frequency contour with group velocity in the positive x-direction.
The regularization constant is taken as κ ¼ 0:0001, which is differ-
ent from the previous example, as we found that an appropriate
regularization constant that leads to global minimization of the ray
term of the cost function is problem-dependent.

Figure 7(b) shows the optimal design variable distributions,
whose values range from 0.58 to 1.34 (the same bounds on the nor-
malized design variables, from 0.2 to 2, are applied in the optimiza-
tion, but the optimal solution did not reach the bounds). The
corresponding optimal ray trajectories are plotted in Fig. 7(c).
While all considered rays pass through the focal point, rays with
different frequencies (but the same initial position) take different
paths to the focal point.

A transient numerical solution was performed to validate the
design. To approximate an incident plane wave, the line source was
applied by prescribing a harmonic displacement along the y-axis.
Displacements of the form u(y, t) ¼ A(y)

P5
i¼1 sin(ωit) were

applied. To ensure that most energy emanates from the region
between y ¼ �10a and y ¼ 10a while minimizing edge effects, a
Gaussian amplitude profile A(y) was prescribed, centered at y ¼ 0
where the amplitude is û, with a standard deviation of 4a. The

FIG. 6. Solutions for the point source focusing example. (a) Ray trajectories in the optimized lattice. (b) Maximum displacements during a transient numerical simulation in
the optimized lattice.
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simulation is carried out by numerically integrating the equation of
motion of a finite grid until time t ¼ 415=ω0. A sufficiently large
domain was considered so that the wave does not reflect off
domain boundaries. The maximum amplitude at each point during
the simulation is plotted in Fig. 7(d). Additionally, Supplemental
Video 2 animates the simulation.

The focusing effect is captured in the transient simulation, as
high amplitudes are steered to the target focal point following the
ray trajectories. A maximum amplitude of u ¼ 0:63û is observed at
the focal point. Simulations show some wave propagation outside of
the region of the ray trajectories. This occurs primarily because the
line source in the transient simulation does not purely excite a plane
wave; it is impossible to avoid exciting wave vectors and frequency
content not associated with the intended plane wave. Despite this,
the desired behavior is clearly captured in the transient simulation.

C. Frequency sorting

As a final example, we steer two frequencies of an incident
plane wave to two different focal points. Again, we consider a line

source along the y-axis from y ¼ �10a to y ¼ 10a. The objective is
to steer rays of frequency ω1 ¼ ω0 through the point x̂1 ¼ (80a, 0)

T

and rays of frequency ω2 ¼ 1:5ω0 through x̂2 ¼ (50a, 50a)
T
. The

corresponding cost function takes the form

cr ¼
w*2
r , r [ I1,

(w*
r � ŵ2)

2
, r [ I2,

(
(23)

where I1 indexes the set of ω1-rays and I2 indexes the set of
ω2-rays, and x*r is the point along ray r that first crosses the radial
coordinate of its target focal point. The target frequencies are high-
lighted alongside the dispersion surface in Fig. 8(a).

For each frequency, 20 rays are included in the cost function,
with equally spaced initial conditions along the line source. Unit
cells in the region x � 0 are fixed with Kx ¼ Ky ¼ K0 and m ¼ m0,
while unit cells at x . 0 are being optimized, beginning from an
initial guess of uniform mass and stiffness. The regularization cons-
tant is taken to be κ ¼ 0:001.

FIG. 7. Broadband focusing example. (a) Local dispersion relation at the line source, with the design frequencies highlighted. (b) Optimal design variable distributions. (c)
Ray trajectories for the optimal design. (d) Maximum displacements during a transient numerical simulation for the optimal design.
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The optimal design variable distributions are plotted in
Fig. 8(b), which range from 0:67 to 1:27 (the same bounds on the
normalized design variables, from 0.2 to 2, are again applied, but
the optimal solution did not reach the bounds). Again, only two
design variables exhibit spatial grading, while Ky is nearly uniform.
The optimal ray trajectories are shown in Fig. 8(c), where the two
frequencies emerging from the line source are steered toward their
respective focal points. Note that, while in the previous example we
focused all considered frequencies at the same point, we here show
that different focal points can also be achieved (and the frequencies
considered here were included in the previous example).

A transient simulation was performed on a finite domain with
the optimal mass and stiffness distributions. A line source excitation
was applied to approximate an incident plane wave. Harmonic dis-
placements of the form u(y, t) ¼ A(y)( sinω1t þ sinω2t) were pre-
scribed for all masses on the y-axis with the same amplitude profile
A(y) as for the previous example. The simulation was carried out
until time t ¼ 415=ω0, and the maximum displacement amplitude
throughout the mass-spring network is reported in Fig. 8(d).
Supplementary Video 3 shows an animation of the simulation.

The transient simulation shows the splitting of the incident
plane wave into two beams. While frequency splitting is achieved,
the focusing effect is not as clear as in the previous examples. At x̂1
and x̂2, maximum displacement amplitudes of 0:46û and 0:45û are
observed, respectively. Displacement signals at the two target focal
points are plotted in Fig. 9 in the time and frequency domains
[where j~u(ω)j denotes the amplitude of the fast Fourier transform
of u(t) ]. The frequency spectra show that each beam has the
expected dominant frequency, though the two frequencies are not
perfectly isolated. Again, the discrepancy between ray tracing and
the transient simulation is largely due to the fact that the line
source in the transient simulation does not excite a pure plane
wave and there are other wave vectors present, which are not
accounted for in the ray tracing.

D. Limitations

While the proposed inverse design framework is a flexible tool
that enables exploration of the general design space of spatial
grading, it is important to address its limitations. The optimization

FIG. 8. Frequency sorting example. (a) Local dispersion relation at the line source, with the design frequencies ω1 ¼ ω0 and ω2 ¼ 1:5ω0 highlighted. (b) Optimal design
variable distributions. (c) Ray trajectories for the optimal design. (d) Maximum displacements during a transient numerical simulation for the optimal design.
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problems that arise are highly non-convex, and it is possible for the
solver to identify undesirable local minima (and it may be unclear
if better minima exist). Specifically, we found our implementation
to find undesirable local minima, especially when operating in fre-
quencies near the stopband. In such cases, a local stopband region
may appear during the optimization, forcing the rays to sharply
turn around to avoid this region, resulting in “tangled” rays, which
can be difficult to recover from during numerical optimization. To
address this limitation, alternative regularization techniques may be
beneficial to penalize fast changes in ray trajectories.

Additionally, one must be cautious regarding the validity of
ray theory and the underlying approximation of local periodicity.
While in many cases, ray tracing provides an excellent approxima-
tion of the solution, for sufficiently fast spatial grading the assump-
tions will break down. Transient simulations can always be
performed for validation of specific designs, but it remains an open
problem to derive a practical validity condition for the ray approxi-
mation in phononic media (beyond the vague requirement that the
spatial grading length scale is much larger than the wavelength).
Furthermore, our ray formulation19 does not capture waves propa-
gating at frequencies within stopbands, which have complex wave
vectors that lead to decaying amplitude. Waves propagating within
a bandgap decay quickly, so it is reasonable to neglect them, as we
are interested in guiding and focusing waves within passbands.
However, future work can investigate the generalization of complex
ray tracing formulations, e.g., from seismology,20 which capture
wave propagation in dissipative media, to phononic materials.

Finally, the mass-spring network has analytical dispersion
relations. This allows for the required first and second derivatives
of the dispersion relation to easily be obtained, which appear in
the ray tracing Eqs. (1) and (2), the backward tracing Eqs. (16)
and (17), and the cost function gradient of (20). More compli-
cated media do not have analytical dispersion relations available
(e.g., if the springs are replaced with beams19). In such cases,
numerical calculation of the dispersion relation and its derivatives
is required.

V. CONCLUSION

Spatially graded phononic materials offer control over wave
propagation beyond what is possible with periodic architectures.
While past research (in the short wavelength/high frequency
regime) has primarily relied on simple spatial gradings and intui-
tive design, we present a systematic tool for the exploration of the
immense design space of spatial grading. To overcome the bottle-
neck of computational efficiency, we leverage ray tracing to solve
the forward problem. An optimization framework has been devel-
oped for the inverse design, which relies on the adjoint state
method to obtain the cost function gradient.

We have demonstrated this inverse design framework on a
two-dimensional mass-spring network, where the spatial distribu-
tion of mass and stiffness is computed to optimize various objec-
tives. Specifically, we designed gradings that achieve focusing of an
entire point source, broadband focusing of a plane wave, and
guiding two different frequencies of a plane wave to different loca-
tions. These results demonstrate only a few of the exciting opportu-
nities enabled by spatial grading. Additionally, the importance of
accounting for the full dispersion relations in graded phononic
media is made evident, which is not captured by transformation
elastodynamics that relies on homogenized material properties.

Due to the generality and flexibility of this inverse design
methodology, there are many opportunities for future research as
cost functions can be formulated for a wide variety of problems
(such as the design of caustic patterns or high-frequency cloaking).
Moreover, our formulation in terms of an arbitrary dispersion rela-
tion is valid in any context where ray theory is valid. Beyond pho-
nonics, this includes the design of spatial gradings for the control
of dispersive waves, e.g., in photonic crystals.35–37

SUPPLEMENTARY MATERIAL

Supplementary video 1 shows an animation of the transient
numerical simulation for the point source focusing example of
Fig. 6. Supplementary video 2 shows an animation of the transient

FIG. 9. Displacements at the target foci for the frequency sorting example, obtained from the transient simulation in Fig. 8(d). Time series displacement response at (a)
the ω1 focal point and (b) the ω2 focal point. Frequency spectra of the displacements at (c) the ω1 focal point and (d) the ω2 focal point.
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numerical simulation for the broadband focusing example of Fig. 7.
Supplementary video 3 shows an animation of the transient numer-
ical simulation for the frequency sorting example of Fig. 8.
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APPENDIX A: DERIVATION OF THE ADJOINT SYSTEM

With some manipulation, the adjoint Eq. (10) yields a system
of first-order differential equations that is solvable along a ray.
Here, we consider stationarity with respect to x and k separately.
Stationarity with respect to x yields

δxL ¼ @C
@x*

� ρ
@G

@x*

� �
δx*

�
ðt*
0
λ

T
δ _x � @2ω

@k@x
δx

� �
dt �

ðt*
0
μ

T @2ω

@x@x
δx dt ¼ 0:

(A1)

Integrating by parts, the δ _x-term in time leads to

@C
@x*

� ρ
@G

@x*

� �
δx* � λ

T
δx
		t*
0

�
ðt*
0

� _λ� λ
T @2ω

@k@x
þ μ

T @2ω

@x@x

� �
δx dt ¼ 0:

(A2)

Since the initial conditions are fixed, δxjt¼0 ¼ 0. This must hold
for an arbitrary δx, so we obtain a first-order differential equation

for λ and μ along with an end condition at t*,

_λ ¼ � @2ω

@x@k
λþ @2ω

@x@x
μ, t [ [0, t*],

λ(t*) ¼ @C
@x*

� ρ
@G

@x*
:

(A3)

A similar analysis is performed for stationarity with respect to
k, beginning with the stationarity condition

δkL ¼ �
ðt*
0
�λ

T @2ω

@k@k
δkdt �

ðt*
0
μ

T _δk þ @2ω

@x@k
δk

� �
dt ¼ 0:

(A4)

Integration by parts gives

�μ
T
δk
		t*
0
�
ðt*
0

�λ
T @2ω

@k@k
þ μ

T @2ω

@x@k
� _μ

� �
δk dt ¼ 0: (A5)

The fixed initial conditions of the ray require that δkjt¼0 ¼ 0. Since
this must hold for arbitrary δk, we obtain

_μ ¼ � @ω2

@k@k
λþ @2ω

@k@x
μ, t [ [0, t*],

μ(t*) ¼ 0:

(A6)

We consider cost functions independent of k, but one can include
k-dependence in the cost function, which leads to a nonzero end
condition for μ.

Equations (A3) and (A6) represent the adjoint system, with
end conditions defined at t ¼ t*. This can be solved as a final value
problem, starting at t* and marching backward in time along the
ray trajectory to t ¼ 0.

APPENDIX B: DISPERSION RELATION DERIVATIVES

The first and second derivatives of the dispersion relation are
required in the ray tracing system, Eqs. (1) and (2), the adjoint
system, Eqs. (16) and (17), and in the cost function gradient com-
putation, Eq. (20). Here, we define these derivatives.

In our implementation, each design variable θ(i) is defined on
a discrete uniform n� n grid. To obtain spatial derivatives of the
dispersion relation at arbitrary locations away from the grid points,
we employ bicubic interpolation. Using bicubic interpolation
ensures continuous spatial derivatives, which we found led to better
performance than bilinear interpolation that has discontinuous
spatial derivatives.

The design variable field ~θ
(i)
(x, θ(i)) :Rd � Rn2 ! R interpo-

lates the design parameter at grid points to an arbitrary point x.
The local dispersion relations vary smoothly in space, dependent
on the design variables only through the interpolated quantity, i.e.,
ω(k, x, θ) ¼ ~ω(k, ~θ(x, θ)). For example, in the mass-spring
network, the local dispersion relations of Eq. (4) depend directly on
the values of the design variables Kx , Ky , and m at an arbitrary
point x, obtained by the bicubic interpolating of the mass and stiff-
ness at the grid points.
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Given this dependence, the dispersion relation derivatives
appearing in the adjoint system and cost function gradient relation
take the form

@ω

@xp
¼
XD
i¼1

@~ω

@~θ
(i)

@~θ
(i)

@xp
,

@2ω

@xp@xq
¼
XD
i¼1

XD
j¼1

@~θ
(j)

@xq

@2~ω

@~θ
(j)
@~θ

(i)

@~θ
(i)

@xp
þ @~ω

@~θ
(i)

@2~θ
(i)

@xp@xq

 !
,

(B1)
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@2~ω
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(i)

@xp
,
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@xp@θ
(j)
l
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XD
i¼1
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(j)
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@2~ω

@~θ
(j)
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(i)
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(i)
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(B2)

@2ω

@ks@θ
(i)
l

¼ @2~ω

@ks@~θ
(i)

@~θ
(i)

@θ(i)l
: (B3)

The derivatives of ~θ with respect to x and θ are evaluated using the
interpolation functions and design variables at surrounding grid
points.

For the mass-spring network, the derivatives of the dispersion
relations with respect to ~θ and k are available by analytically differ-

entiating Eq. (4) (recalling that ~θ
(1) ¼ Kx , ~θ

(2) ¼ Ky , and ~θ
(3) ¼ m).
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