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A B S T R A C T

Although metamaterials have been widely used for controlling elastic waves through bandgap engineering,
the directed guidance of stress waves in non-periodic structures has remained a challenge. This work
demonstrates that spatially graded metamaterials based on conformal mappings present a rich design space for
controlling and attenuating wave motion — without the need for bandgaps. Conformal mappings transform
an elementary unit cell by scaling and rotation into graded lattices with approximately geometrically similar
unit cells. This self-similarity allows for control over the local wave dispersion throughout the metamaterial.
As a key mechanism, it is shown that elastic waves cannot propagate through graded unit cells with
significant size differences, except at low frequencies. This is exploited to create low-pass elastic wave guides,
extending beyond classical bandgap engineering, since bandgaps are not required to achieve wave guiding and
attenuation. Experiments confirm the low-pass elastic wave filtering capability of a planar truss metamaterial
with conformal grading. Finally, a systematic design of curved metamaterial surfaces is presented, providing
a flexible framework for programming low-pass attenuation and wave guiding in three dimensions.
. Introduction

Lattices appear naturally in atomic crystals, where wave dispersion
as been studied for decades [1] and plays a fundamental role in
attice vibrations, electrical and thermal conduction, and the refraction
f light. Metamaterials do what nature cannot do: the careful design
f lattices, which enables as-designed effective properties. Dispersive
henomena observed at the atomic scales, such as bandgaps (frequency
ands where wave propagation is forbidden), can be achieved and
xploited by metamaterials on a wide range of length scales. The
esign of periodic mechanical metamaterials, composed of repeating
rrangements of beams, plates, shells, or composite materials, has been
ell-studied due to their appealing elastic wave attenuation capabil-

ty arising from bandgaps [2]. However, graded metamaterials with
mooth spatial variation of unit cells have remained largely unexplored
n the context of elastic wave propagation, despite the immensely
ncreased design space compared to periodic architectures [3].

Motivated by the opportunity to leverage bandgaps for vibration
uppression and wave guiding, significant efforts have been made to de-
ign and optimize periodic metamaterials with wide bandgaps that span
esired frequencies [4–9]. By contrast, spatially graded architectures
re less explored but offer a considerably larger design space, since
oth the unit cell content and its spatial variation can be controlled.
or example, bandgaps of different unit cells in a graded metamaterial
an combine to produce a wider effective bandgap. This phenomenon,
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sometimes referred to as rainbow trapping, has been demonstrated for
elastic waves in one-dimensional [10–16] and two-dimensional [17–
19] metamaterials (where wave attenuation has been demonstrated
along a specific direction only). While existing research highlights the
promise of graded metamaterials for wave manipulation, systematic
methods that explore the vast design space of spatially graded lattices
have remained an open challenge.

In this work, we present metamaterials graded by conformal map-
pings, which we show to be effective for mechanical wave attenuation
and wave guiding. Conformal mappings consist of a locally uniform
scaling and rotation, ensuring that each unit cell in the graded lattice
is approximately scaled and rotated. Hence, all unit cells are approxi-
mately geometrically similar. Due to this self-similarity, we show that
waves cannot propagate along trajectories that see a significant change
in unit cell size, except at low frequencies. A simple yet powerful design
principle follows: designing regions with a significant unit cell size
difference ensures that waves cannot propagate between these regions.
As a result, certain regions can be isolated from high-frequency wave
propagation. Additionally, we show that attenuation via spatial grading
is achievable in the absence of bandgaps, as long as neighboring
dispersion surfaces are non-intersecting.

Our use of conformal mappings for mechanical metamaterials is dis-
tinct from their extensive use for optical metamaterials. Transformation
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Fig. 1. Planar truss lattice for low-pass attenuation: (a) Reference periodic truss lattice. (b) Graded truss lattice corresponding to a conformal mapping of the reference lattice. (c)
Dispersion relations of the reference lattice with unit cell side length 𝑙 and 𝜔0 = 𝑙−1

√

𝐸∕𝜌. (d) Second dispersion surface of unit cell 1, and (e) of unit cell 2 highlighted in (b),
with the 𝜔𝑟 level set highlighted.
optics often relies on conformal mappings to achieve practical effec-
tive material parameters [20–23] (similarly for transformation acous-
tics [24–27]). However, transformation optics and acoustics typically
apply in the non-dispersive setting [28], requiring sub-wavelength unit
cells. Furthermore, they do not directly generalize to elastodynamics
due to a lack of form invariance [29].

In the elastodynamic setting, conformal maps have primarily been
utilized in the low-frequency and long-wavelength (with respect to a
unit cell) regime by relying on effective continuum properties [30–34],
which apply only in the homogenization limit [35] , thus missing out on
the rich dispersive behavior arising in the short-wavelength regime that
is key to mechanical metamaterials. In contrast to previous work, we
utilize conformal mappings to control waves at high frequencies and
short wavelengths, beyond the homogenization limit, by utilizing the
full dispersion relations. To this end, with inspiration from the discrete
geometry literature [36–38], we design planar and curved conformally
graded metamaterial surfaces. While conformal mappings represent
only a fraction of the spatial grading design space, we show that their
wave dynamics can be engineered using a simple but general design
procedure.

The resulting spatially graded metamaterials appeal to a wide range
of applications across scales. Their broad effective bandgaps are practi-
cal for vibration suppression, e.g., to shield infrastructure from seismic
waves [39]. Grading is also appealing for energy harvesting by trapping
or focusing waves [40,41]. Additionally, frequency-selective sensing
and signal processing capabilities are enabled by spatial grading [42,
43]. The conformal architectures presented in this work enhance the
applicability of graded metamaterials by offering low-pass attenuation
capabilities without relying on bandgaps. Furthermore, we propose
a systematic design method for curved metamaterial surfaces, which
offers a flexible tool for programmable wave guidance and attenuation.
2

2. Conformally graded metamaterials

We design spatially graded lattices through a mapping 𝑓 ∶  ↦ R3,
which transforms a planar, periodic reference lattice  ⊂ R2 into a
graded lattice ′ ⊂ R3. Surface ′ can be flat or curved (both cases
will be illustrated). We denote points in the reference lattice by 𝒙 ∈ 
and their mapped position in the graded lattice by 𝒙′ = 𝑓 (𝒙) ∈ ′.

The differential d𝑓 = d𝒙′
d𝒙 of the mapping defines how a vector

𝒗 ∈ R2 maps to the vector 𝒗′ = d𝑓 (𝒗) ∈ R3 (i.e., it characterizes how
vectors tangent to the reference lattice map onto the corresponding
vectors tangent to the graded lattice). The mapping is conformal, if
d𝑓 (𝒗) ⋅ d𝑓 (𝒘) = 𝐽 2𝒗 ⋅𝒘, where 𝐽 > 0 is the conformal scaling factor.

Conformal mappings are chosen specifically, because they consist
solely of a local uniform scaling (since for any vector 𝒗 we have
|d𝑓 (𝒗)| = 𝐽 |𝒗|) and a rotation (since the angle between vectors is
unchanged by the mapping) of the unit cells. Fig. 1ab illustrates a
conformal mapping in the case where ′ is planar. Here, the vectors
𝒗 and 𝒘, which are attached to the reference lattice at point 𝒙𝑖, are
uniformly scaled and rotated by the mapping to vectors 𝒗′ and 𝒘′, while
the angle between them is preserved. For a more extensive treatment
of conformal mappings, see [44,45].

We assume that in the transformed lattice the unit cells vary slowly
in space, so that d𝑓 can be taken as constant throughout any given
unit cell. Under this assumption, each unit cell undergoes only uniform
scaling by a factor 𝐽 and a rotation. This assumption allows the graded
lattice to be modeled as locally periodic, so that wave propagation is
governed by the local dispersion relations [3]. That is, the local disper-
sion relations at a given unit cell on the graded lattice are calculated
assuming periodicity of that unit cell, which is a valid approximation
for slow spatial gradings.

Conformal grading yields a special case of local periodicity since,
under the above assumptions, all unit cells are geometrically similar
to the unit cell of the reference lattice. Consider a reference unit cell
with dispersion relations 𝜔(𝒌), relating the wave vector 𝒌 ∈ R2 to the
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frequency 𝜔 of an elastic plane wave. A unit cell in the transformed lat-
tice has local dispersion relations 𝜔′(𝒌′). Since this unit cell is a scaled
and rotated copy of the reference unit cell, its dispersion relations take
the form

𝜔′(𝒌′) = 𝐽−1𝜔(𝒌), (1)

where 𝒌′ is the wave vector in the transformed coordinates (a deriva-
tion is provided in Section 1 of the Supplementary Material, which
holds generally for linear elastic waves). For the example mapping in
Fig. 1, the dispersion relations of the reference lattice (Fig. 1c) are
hence simply re-scaled to determine the local dispersion relations of
any unit cell in the graded lattice, including unit cells 1 (Fig. 1d) and
2 (Fig. 1e).

To understand how to exploit this inverse frequency scaling relation,
we view wave propagation from the perspective of ray theory. Ray
theory has long been used to model wave propagation in many fields,
ranging from optics [46] to seismology [47], where it provides approx-
imate solutions to a wave equation along characteristic ray trajectories.
We recently extended it to graded elastic metamaterials [3], under the
assumption that wavelengths are significantly smaller than the length
scale associated with the spatial grading of the unit cells. Ray theory
is valid in the context of high frequencies and short wavelengths,
i.e., when unit cells change slowly in space relative to the wavelength,
which is the context considered here.

We rely on two key properties of rays to reveal the special properties
of conformally graded lattices in the linear elastic regime:

(i) A ray propagates at a fixed frequency.
(ii) A ray is associated with a particular dispersion surface (i.e., a

particular mode). It cannot switch between modes as long as the
unit cells vary slowly in space and no frequency degeneracies are
encountered.

Property (i) holds as long as the local dispersion relations are time-
invariant [48], which is generally the case for elastic media. Property
(ii) is a re-statement of the adiabatic theorem, which is well-known in
quantum mechanics [49] but also applies to elastodynamics [50].

Combining Properties (i) and (ii) with the dispersion scaling law of
Eq. (1) admits a general observation about elastic wave propagation
in conformally graded lattices: high-frequency waves cannot propagate
along trajectories that see significant changes in unit cell size. This becomes
evident as follows. By Eq. (1), local dispersion surfaces everywhere are
a scaled copy of the reference dispersion surfaces. By Properties (i) and
(ii), a ray is confined to a level set of a given mode’s dispersion surface
corresponding to the ray’s fixed frequency 𝜔𝑟 (e.g., in Fig. 1d, a ray’s
wave vector must lie on the intersection of the dispersion surface and
the ray’s fixed frequency 𝜔𝑟). If that dispersion surface has a nonzero
minimum frequency, it is always possible to scale that surface up or
down such that it no longer intersects 𝜔𝑟 (e.g., in Fig. 1e there is no
intersection between 𝜔𝑟 and the scaled dispersion surface). This scaling
argument, however, does not apply at low frequencies of dispersion
surfaces emerging from 𝜔 = 0 (the so-called acoustic modes).

By this scaling argument, attenuation via spatial grading is achiev-
able when adjacent dispersion surfaces are non-intersecting. When
adjacent dispersion surfaces intersect, Property (ii) (the adiabatic the-
orem) does not hold and mode conversion may occur. We rely on the
argument that, when a propagating wave becomes forbidden, it cannot
convert to another (non-forbidden) mode, which motivates the require-
ment of non-intersecting dispersion surfaces. A bandgap ensures that
adjacent dispersion surfaces are non-intersecting, but it is also possible
to have non-intersecting dispersion surfaces that are not separated by a
bandgap. Thus, attenuation is also possible in the absence of a bandgap
if adjacent dispersion surfaces are non-intersecting (e.g., the lowest two
surfaces of Fig. 1c), as we show in the following examples.
3

a

3. A planar truss lattice for low-pass attenuation

An instructive example that demonstrates the use of a conformal
grading for wave attenuation is a planar truss lattice that acts as a
low-pass filter of elastic waves. Consider the conformal mapping

𝑧′ = 𝑒𝑧, (2)

where 𝑧′ = 𝑥′1 + i𝑥′2, 𝑧 = 𝑥1 + i𝑥2 in 2D, and i =
√

−1. Fig. 1 illustrates
this mapping, which conformally transforms the reference lattice with
square unit cells (Fig. 1a) to a radial lattice (Fig. 1b). In the transformed
lattice, the outermost unit cells are 𝐽o = 3.51 times larger than the
nnermost ones, which have 𝐽i = 1, where 𝐽o and 𝐽i are scaling factors
ith respect to the reference lattice.

Each unit cell consists of slender linear elastic beams along its four
dges. Dispersion relations for the reference unit cell are computed
umerically using a beam finite element model of a unit cell (Sup-
lementary Material, Section 2). The first three dispersion surfaces
orresponding to out-of-plane modes are plotted in Fig. 1c over the
irst Brillouin zone, with frequencies normalized by 𝜔0 = 𝑙−1

√

𝐸∕𝜌,
where 𝑙 is the edge length of the reference unit cell, and 𝐸 and 𝜌 are

oung’s modulus and the mass density of the beams’ base material.
he lowest modes of truss lattices are decoupled into in- and out-
f-plane modes [51]; by considering out-of-plane excitation, only the
ut-of-plane modes must be considered.

This conformally graded truss lattice acts as a low-pass filter for
aves applied to the center of the lattice; waves above a cutoff fre-
uency cannot propagate from the inner to the outer radius. To illus-
rate this, consider a mode 2 ray that starts in unit cell 1 of Fig. 1
nd propagates radially outward at the excitation frequency 𝜔𝑟. In unit
ell 1, the wave vector of this ray must lie on the intersection of the
ode 2 (red) dispersion surface and the 𝜔𝑟 level-set (gray), as depicted

n Fig. 1d. Moving to unit cell 2, which is 2.73 times larger than unit
ell 1, its dispersion surface is obtained by scaling the frequency of
nit cell 1’s dispersion surface by a factor of 1∕2.73. At unit cell 2,
here is no intersection between the mode 2’s dispersion surface and
he 𝜔𝑟 level set (Fig. 1e). Therefore, a mode 2 ray starting at unit
ell 1 with frequency 𝜔𝑟 is forbidden in unit cell 2. Supplementary
ideo S1 visualizes the dispersion surface as the unit cell is re-scaled,
ighlighting the critical scaling factor where propagation at frequency
𝑟 becomes forbidden.

By applying this scaling argument more generally, rays of all fre-
uencies (except those approaching 𝜔 = 0 of mode 1) become forbidden
or a sufficiently large scaling factor, corresponding to when the disper-
ion surface is scaled to no longer intersect the frequency of the ray.
hus, rays starting at unit cell 1 will reach some maximum radius, be-
ond which propagation is forbidden. Based on this dispersion scaling
rgument, the critical radius is computed across a range of frequencies
nd plotted in Fig. 2e. Regions where propagation is allowed are
ighlighted in red, and regions where a wave starting at the inner
adius is forbidden are white. Details of the scaling analysis are given
n Section 2.3 of the Supplementary Material, where care is taken to
ccount for mode conversion due to frequency degeneracies where
ispersion surfaces intersect.

We experimentally demonstrate the attenuation capability of this
eometry, using the prototype in Fig. 2a, which is made of aluminum
nd has a tapered thickness to ensure that all unit cells are geomet-
ically similar (see the close-up view in Fig. 2b). Broadband excitation
as applied to the center by a piezoelectric (PZT) transducer in the out-
f-plane direction. The out-of-plane displacement was measured with
scanning laser Doppler vibrometer, as illustrated in Fig. 2c. Details

f the fabrication and experiment are presented in Section 2.2 of the
upplementary Material.

The experimental results in Fig. 2d show the amplitude of the
requency response function (FRF) [52], denoted 𝐻(𝑟′, 𝑓 ), between the
isplacement at radial coordinate 𝑟′ and the inner radius. This provides
measure of attenuation as a wave travels outward from the inner
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Fig. 2. Experimental confirmation of the low-pass attenuation in a conformally graded truss: truss lattice prototype from the top view (a) and a close-up view (b). (c) Experimental
setup: a piezoelectric transducer excites the lattice, whose response is measured by a scanning laser Doppler vibrometer along radial lines. (d) Measured FRF amplitude along a
radial line. (e) Predicted regions of allowed and forbidden propagation based on dispersion relation scaling.
Fig. 3. Conformal bump example. (a) Target scaling factor distribution plotted on the reference lattice. (b) Optimal conformal truss lattice realizing the prescribed scaling.
Color indicates the maximum amplitude during a finite element simulation with broadband excitation applied on the lower left edge (highlighted in red) with amplitude �̂�. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
radius by interpreting the displacement signal at the inner radius as
the input to the truss. Regions with high FRF amplitude in Fig. 2d
agree closely with allowable propagation regions in Fig. 2e, whereas
regions of low values correspond to the predicted regions of forbidden
propagation. Based on the dispersion relation scaling analysis, the
predicted low-pass cutoff frequency is 14.7 kHz; higher frequencies
are predicted to be attenuated before reaching the outer radius of the
lattice. This prediction agrees with the experimental low-pass cutoff
frequency, which is observed to be about 16 kHz.

4. Curved metamaterial surfaces

In addition to the above plane-to-plane case, the same physical prin-
ciples apply to conformal mappings that transform a planar surface into
a curved surface, for which we propose a systematic design framework
for curved conformal lattice surfaces. Based on the guiding principle
that waves do not propagate between unit cells with a significant
scaling difference, our objective is to control the conformal scaling
factor distribution in the lattice in order to either isolate a region
4

from incident high-frequency waves or to confine waves in a specified
region. The advantage of curved surfaces is that curvature offers a
richer design space than planar lattices, allowing for elaborate scaling
factor distributions to be realized as follows. Based on a desired unit cell
scaling distribution, a target conformal scaling factor distribution 𝐽 (𝒙)
is first prescribed on a planar reference lattice. Next, an optimization
problem identifies a transformed three-dimensional (3D) lattice that
best realizes the prescribed scaling factor distribution.

We approach this problem from the perspective of discrete differ-
ential geometry, which naturally follows from the discrete nature of
the lattice. In the discrete setting, the target scaling distribution is
achieved by re-scaling the edges from the reference length 𝑙 to a target
length 𝑙. The target edge lengths are carefully chosen to satisfy discrete
conformal equivalence [36], as detailed in the Supplemental Material,
Section 3.1.

The problem of computing a 3D embedding (i.e., vertex coordinates
𝒙′) of a discrete surface given its discrete metric (i.e., edge lengths 𝑙)
has been addressed in the discrete differential geometry literature [53–
56]. Inspired by these approaches, to compute the transformed vertex
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Fig. 4. Conformal spiral example. (a) Target conformal scaling factor distribution plotted on the reference lattice. (b) Optimal conformal truss lattice realizing the prescribed
scaling. Color indicates the maximum amplitude during a finite element simulation with a harmonic point excitation of displacement amplitude �̂� perpendicular to the surface
(along the red arrow). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
coordinates 𝒙′ we pose the unconstrained minimization

min
𝒙′

𝐸(𝒙′), (3)

where

𝐸(𝒙′) =
∑

𝑚
𝑘
(

𝑙𝑚(𝒙′) − 𝑙𝑚
)2 +

∑

𝑛
𝜅 𝜃𝑛(𝒙′)2. (4)

Here, 𝑚 indexes all edges and 𝑛 indexes the interior edges, which are
not on the boundary. This optimization can be interpreted as an energy
minimization problem by imagining that an extensional spring is placed
on each edge, with stiffness 𝑘 and rest length 𝑙. In practice, a regu-
larization term is required to achieve smooth solutions, otherwise the
optimal surfaces will be ‘crumpled’ [56]. To this end, the second term
in Eq. (4) effectively places a torsional spring on all interior edges with
torsional stiffness 𝜅 and zero rest angle (the latter corresponds to a flat
configuration when the faces connected to the edge are co-planar). This
term penalizes crumpled configurations in favor of smoother solutions.
Smooth unit cell variations are further essential to avoid sharp kinks,
which may invalidate Property (ii) by leading to mode conversion or
in-plane and out-of-plane mode coupling.

Fig. 3 presents the example of a conformal bump. The reference
lattice is planar with uniform square unit cells comprised of beams
along each edge. The scaling factor is defined according to a radial
bump function and is plotted in Fig. 3a on the reference lattice. It
leads to large unit cells in the center with a maximum scaling factor of
𝐽 = 3.0, surrounded by smaller unit cells of 𝐽 = 1 outside of the bump;
the optimal 3D geometry is plotted in Fig. 3b. (Constraints were added
to fix the four boundaries of the lattice; for implementation details, see
Section 3 of the Supplementary Material.) The bump in the center of
the transformed lattice, which contains large unit cells, is isolated from
high-frequency waves initiated on the boundaries of the lattice, whose
smaller unit cells support those frequencies. To demonstrate this effect,
a transient finite element simulation was performed. In the simulation,
broadband displacement excitation was applied on the lower left (red)
edge in the 𝑥′3-direction with magnitude �̂�. Beam elements were used
to model the lattice; see the Supplementary Material, Section 3.4 for
details. The suppression of waves in the bump region is evident from
the color map of Fig. 3b, which shows the maximum displacement
magnitude at each point over the duration of the simulation (see also
Supplementary Video S2). Importantly, this mechanism is not restricted
to a narrow range of frequencies (as is often the case when leveraging
bandgaps to manipulate waves). Instead all frequencies above the
critical frequency (which is controlled by the unit cell scaling factor
distribution) are attenuated in the bump region. This effectively extends
the benefits of rainbow trapping to, in principle, arbitrarily defined
regions. This type of architecture is appealing for vibration isolation
applications. For example, sensitive equipment could be mounted to
5

the bump for shielding from high-frequency vibrations. To potentially
achieve full attenuation across all frequencies, one could consider
metamaterials connected to a foundation, which can exhibit bandgaps
starting at zero frequency [57], combined with conformal grading.

Beyond merely attenuating waves, conformal grading also provides
a means of designing wave guides. A second example of a conformal
spiral is presented to demonstrate wave guiding. In this example, a
region of small unit cell scaling in the shape of an Archimedean spiral
is prescribed, which is plotted on the reference lattice in Fig. 4a. In
the spiral region, the smallest scaling factor is 𝐽 = 0.47, while a factor
of 𝐽 = 1 is prescribed outside of the spiral region. The optimal lattice
surface is plotted in Fig. 4b, which takes the form of a wavy surface to
accommodate the smaller unit cells along the spiral.

In this example, the path of small unit cells along the spiral is
capable of confining waves. We demonstrate this with a transient finite
element simulation, where a harmonic displacement point excitation of
magnitude �̂� is applied at the center of the spiral in the direction locally
normal to the surface at that point. The frequency of the excitation
is chosen to be near the top of the lowest dispersion surface, such
that only a small increase in unit cell size forbids propagation. The
resulting wave emanating from the point source follows the path of
small unit cells and is thus guided along the spiral. The coloring
of Fig. 4b shows the maximum displacement magnitude throughout
the lattice during the simulation (see also Supplementary Video S3).
This example demonstrates that the spatially graded lattice can be
leveraged to effectively steer waves by designing regions of forbidden
propagation.

While both examples confirm that waves are attenuated in regions
with a large unit cell scaling factor compared to the excitation location,
perfect attenuation is not achieved, as may be expected for a number
of reasons. The assumption of local periodicity is an approximation.
Validity of the local periodicity assumption is difficult to quantify in the
elastodynamic setting because the neglected terms of the underlying
asymptotic analysis cannot be easily evaluated [3] (in contrast to,
e.g., one-dimensional rainbow trapping in optical systems, where the
adiabatic parameter provides a simple validity assessment [58]).

Additionally, it is assumed that the ‘locally flat’ dispersion relations
are valid for curved truss lattice surfaces. Specifically, we compute
the local dispersion relations based on a flat lattice and assume that
they are valid in the local neighborhood of a unit cell on a curved
surface. Thus, the role of curvature is primarily to realize unit cell
scaling distributions that are not possible with flat surfaces. Through
the assumption of locally flat dispersion relations, curvature does not
directly affect the local wave dispersion. Of course, for sufficiently
aggressive curvature, this assumption would break down. However,
for the examples presented, the finite element simulations display the
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expected behavior, indicating that the locally flat dispersion relations
capture the dominant physics.

Finally, the unit cells are not exactly geometrically similar in these
two examples. Nevertheless, our assumptions are sufficiently valid to
produce the desired wave confinement and attenuation behavior.

5. Conclusion

We have shown that conformally graded metamaterials effectively
attenuate mechanical waves above a controllable cut-off frequency
and hence can be designed to behave as effective waveguides —
without requiring bandgaps. While metamaterials with broadband at-
tenuation capability have been pursued by a growing body of research,
conformally graded architectures go beyond broadband to achieve
low-pass attenuation. Furthermore, our dispersion scaling analysis is
more general than tracking how bandgaps shift with spatial unit cell
variations, which is typically done to study attenuation in graded
architectures [17–19]. Specifically, a bandgap between two dispersion
surfaces is not required to achieve attenuation, but only the less strict
requirement that there is no intersection between neighboring disper-
sion surfaces. For example, there is no bandgap between the lowest two
dispersion surfaces of Fig. 1c; yet, since there is no intersection between
them, attenuation via spatial grading is achieved.

While an experimental demonstration confirms the low-pass atten-
uation capability of a planar lattice, curved lattice surfaces offer a
wide design space for conformal grading, whose systematic inverse
design shows promise for vibration isolation applications across length
scales. This work represents only a small step into the vast and largely
unexplored design space of graded and curved metamaterial surfaces.
The effectiveness of conformal grading suggests that more general types
of grading are promising for linear elastic wave manipulation.
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