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Abstract — In situ geometric reconfiguration of a phased
array increases the diversity of radiation patterns that can be
synthesized by the array. Such shape-changing phased arrays
enable new applications by dynamically conforming their shapes
to the geometry best suited for a given task. This work
presents the design and demonstration of an origami-inspired
shape-changing array built out of identical radiating tiles held in
place by a mechanical backbone. The array is capable of shifting
into planar, spherical, and cylindrical configurations. The benefits
of such an array are analyzed by comparing the properties of
different geometries and verified with measurements of the first
origami-inspired shape-changing phased array.
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I. INTRODUCTION

The versatility of traditional phased arrays has enabled
a wide range of applications by allowing the electronic
reconfiguration of an RF transducer’s radiation pattern.
However, the achievable radiation patterns are still limited
by the array geometry; the maximum gain is limited by the
volume [1], the grating lobes are limited by the element
spacing, and the steering range is limited by the orientations
of the element apertures. Phased arrays conformal to different
geometries, such as planar, cylindrical, and spherical, have
been extensively explored. Planar arrays have been shown to
have a higher broadside gain but a more limited scan range than
spherical arrays [2]. Much of the exploration of phased arrays
has assumed that the geometry is fixed, limiting the space
of achievable radiation patterns. There is thus an opportunity
to enhance the capabilities of phased arrays by introducing
dynamic geometric reconfigurability into the design space.

The idea of combining origami folding techniques and
antennas is not new. There has been much work on origami
antennas, that is, single element radiating structures that use
origami to achieve a particular goal such as deployability [3]
or for adjustable frequency [4], polarization [5], and radiation
pattern [6]. In general, these structures are single port devices
whose radiation properties are not electronically controllable.
While some origami antennas have been embedded into an
array, in these cases the array itself is fixed; the shape change
occurs within an element and not across the array.

Exploration of mechanical reconfigurability across an array
has been much more limited. Origami has been used to design
frequency-selective surfaces [7]; mechanically reconfigurable
arrays of passive elements that can change shape in order
to alter their interactions with incident electromagnetic fields.
They are essentially reconfigurable RF metamaterials and show

promise for novel antenna designs and applications. However,
the lack of ports on the elements precludes these surfaces from
being used as antennas. In addition, reconfigurable patch arrays
with at most four elements have been explored [8]. However,
these arrays are driven with a single feed and are not capable
of beam steering like a phased array, and thus behave like
a single antenna element. The full opportunity presented by
geometric reconfigurable arrays has not been explored.

To the authors’ best knowledge, this work presents the first
origami-inspired shape-changing phased array. First, theory on
the benefits of geometric reconfigurability is explored. Then
the design of a 3-by-5 element shape-changing phased array
is presented. The array can morph into a planar configuration
for maximum gain, a spherical configuration for maximum
steering range, and a cylindrical configuration for both large
gain and steering range in one direction. Finally, measurements
of the array verify the presented theory and demonstrate the
advantages of shape-changing phased arrays.

II. GAIN PROPERTIES OF CONFORMAL ARRAYS

A. Relative Gain of Planar and Spherical Arrays
The relationship between the size of an antenna and its

maximum gain has been well studied [1]. For electrically
large arrays, the maximum achievable gain of the array is
proportional to its cross-sectional area. When viewed from
broadside, a planar antenna array has a cross-sectional area
Across,plane = Aplane and the maximum possible gain is

Gmax,plane = 4π
Aplane
λ2

. (1)

Suppose the antennas of this array are arranged on the
surface of a sphere of radius R, so that they form a spherical
cap with the same surface area as the planar array1. A cap on
a sphere can be parameterized by the arc formed by azimuth
angle 0 ≤ φ ≤ 2π at a particular zenith angle θc, with an area

Acap =

∫ θc

0

∫ 2π

0

R2 sin(θ)dφdθ = 2πR2
(
1 − cos(θc)

)
. (2)

Equating this to the planar area Aplane gives θc:

θc = arccos

[
1 − Aplane

2πR2

]
. (3)

For an array area smaller than a hemisphere2, the entire
1Note that the planar array cannot be exactly replicated on the surface of

the sphere because the change in Gaussian curvature necessitates a change
in element spacing. Thus we choose to form a spherical cap with the same
surface area in order to simplify the analysis.

2Aplane ≤ 2πR2
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Fig. 1. Theoretical effect of rotation around the x− and y− axes on the gain
of an array in various geometric configurations with identical surface area λ2.
The cylinders are oriented along the x− axis.

array is visible to a distant observer at θ = 0. The
(visible) cross-sectional area of the array is calculated from the
projection of the cap onto a plane. The radius of this circle,
rproj , is calculated by the spherical-to-cylindrical conversion:

rproj = R sin(θc) = R

√
1 −

[
1 − Aplane

2πR2

]2
. (4)

Thus the cross-sectional area is

Across,sph = Aplane

[
1 − Aplane

4πR2

]
(5)

which quantifies the visible array area reduction when mapped
onto a sphere. For a large sphere R2 � Aplane, the curvature is
negligible and the cross-sectional area is unaffected. However
Across,sph is cut in half if the array covers an entire
hemisphere. For even larger arrays, the additional area falls
on the opposite side of the sphere and is occluded and the
cross-sectional area reduces to that of a sphere, πR2. The
maximum gain of the array mapped to the sphere is thus

Gmax,sphere = Gmax,plane −
[
Aplane
λR

]2
. (6)

B. Effect of Rotation on Gain

Figure 1 demonstrates how the gain of different geometric
shapes changes as the object is rotated about the x- and y-axes.
As in section II-A, each shape has been normalized to have
the same surface area. The cylinder and half cylinder are
both orientated along the x-axis. The plane has the largest
broadside gain and highest sensitivity to rotation. The sphere
has the lowest broadside gain but is insensitive to rotation.
The cylinder is insensitive to rotation in one direction and has
a larger broadside gain than the sphere. Both the hemisphere
and half cylinder have larger broadside gains than their full
counterparts because their entire surface area is observable.
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Fig. 2. Antenna driver RFIC block diagram and die photo.

III. ORIGAMI-INSPIRED PHASED ARRAY

A. Array Overview

The antenna array consists of 15 identical 6 cm square
tiles that are held in a particular shape by an origami inspired
metal backbone. Each tile is a self-contained radiating unit
consisting of an antenna, a custom antenna driver RFIC, and
support electronics. Tiles are attached to the backbone using
nylon bolts in order to minimally disturb the antenna. The
backbone allows the shape of the array to be easily altered.

The tiles are arranged in series, with the frequency
reference, power, and programming signals passed from one
tile to the next using flexible cables. The flexible nature of the
array makes reliable reference distribution at RF frequencies
difficult. Therefore, the output frequency is synthesized from
a low frequency reference using a phase locked loop (PLL).
In addition, the reference distribution introduces a fixed,
but unknown, phase shift between tiles. This phase shift is
compensated for using a programmable phase shifter and
external calibration. Both the PLL and phase shifter are
implemented in a custom RFIC discussed in section III-B.

B. IC Design

A custom 65nm CMOS RFIC drives each antenna element
with a 2.6 GHz signal with programmable amplitude and
phase. Figure 2 shows a block diagram and die photo of the
IC. A type-II PLL with a programmable divider [9] generates
quadrature signals at the output frequency fout = Nfref . The
vector modulator acts as a phase shifter and a power amplifier
(PA) driver by performing a weighted sum of the quadrature
signals to set the phase and amplitude of the PA drive,
determining its class of operation, linearity, and efficiency.
The output stage is a cascode class E/F−1 switching PA. A
programmable linear regulator controls the supply voltage of
the PA, and thus the output power. An on-chip transformer is
used as part of the waveform shaping filter, as an impedance
transformer, and as a balun to enable the chip to drive both
differential and single-ended outputs.

C. Antenna Design

The antenna on each tile is a via-fed linearly polarized
patch fabricated on a 120 mil Rogers 6002 substrate. The

345



Fig. 3. (a) Tile antenna. (b) Measurement coordinate system. Directivity
measurements in (c) E- and (d) H- planes assuming no backside radiation.

length is 32.27 mm and its width is 41.08 mm. The
patch ground plane shields the electronics and the metal
origami backbone. An L matching network tunes out the feed
inductance and matches the antenna to 50Ω at 2.6 GHz. Figure
3 shows the simulated and measured antenna patterns. The
measured directivity and HPBW of the antenna is 8.9 dBi and
60.9◦. The simulated efficiency is 98.1%.

D. Mechanical Backbone

The origami-inspired backbone structure allows for
reconfiguration of the antenna tiles between spherical, planar,
and cylindrical configurations. The geometry consists of a
5-by-5 grid of squares placed on the surface of a sphere
of radius 19.6 cm. Adjacent squares are connected by pairs
of trapezoids joined by compliant hinges. In the spherical
configuration, the trapezoids open into deep valley folds. From
the spherical configuration, the valley folds can be closed
and the trapezoids brought into contact to achieve planar
and cylindrical configurations. In the planar configuration, the
antennas are on a 6.75 cm grid, or 0.585λ at 2.6 GHz.

This geometry has 24 kinematic degrees of freedom, so
the structure is designed to be bi-stable in the spherical
and planar configurations to simplify actuation and facilitate
reconfiguration. To achieve bi-stability, torsional springs are
embedded on each fold and fold angles are restricted using
stops. Specific rest and stop angles of the hinges are selected
such that both the spherical and planar configurations are at
local strain energy minima. The mountain folds are given a
rest angle of zero (fully open) while the valley folds are given
a rest angle of π radians (fully folded). The strain energy of
the structure is

E =
∑
i∈Im

km
2
θ2i +

∑
j∈Iv

kv
2

(θj − π)
2 (7)

where Im and Iv index mountain and valley folds and k is
the torsional stiffness. The cylindrical configurations can be
accessed by tightening a cable between opposite sides of the
structure.

Fig. 4. Subset of x-plane beam patterns and the maximum measured EIRP
curves (dotted) for (a) planar and (b) y-cylinder configurations. (c) Diagram
of measurement setup. (d) Measurement coordinate system.

To build the structure, compliant hinges have been designed
as lamina emergent torsional connections [10] cut by water
jet from 0.025 inch thick spring steel. Since the plates and
stops are not perfectly rigid and the compliant hinges are not
perfect folds, the prototype slightly deviates from ideal planar,
spherical, and cylindrical shapes. However, they approximate
these shapes closely enough with the aid of external supports
to demonstrate the advantages of a reconfigurable array.

IV. MEASUREMENTS

A. Measurement Setup

Figure 4 (c) shows a diagram of the measurement setup. A
vector network analyzer is set to measure S21 at 2.6 GHz. A
pair of frequency dividers (total division ratio of 32) convert
the 2.6 GHz output of the vector network analyzer (VNA) to
a 81.25 MHz reference signal. A microwave amplifier buffers
the reference signal and supplies it to the antenna under test
(AUT). Each tile within the array up-converts the reference
back to 2.6 GHz, adjusts the phase, and radiates a fixed power.
The combined radiated field is measured by a horn antenna
located 2.91 meters from the AUT and connected to the VNA.
This distance is larger than the Fraunhofer distance of every
measured array configuration. The measured S21 is converted
to EIRP using a fixed calibration factor. This calibration factor
is calculated by measuring a fixed radiation pattern with both
the VNA and a power meter and comparing the results.

To measure the radiation pattern, the AUT is mounted
horizontally on a far-field scanner and rotated by an angle
θ around the y-axis as shown in Figure 4 (d). To steer a beam
to a given angle, the AUT is rotated in the opposite direction
and the power received by the horn antenna is maximized by
using an optimization algorithm to adjust the element phases.

B. Results

A beam is steered in 5◦ increments from −90◦ to 90◦

in the x-plane and in the y-plane for each configuration
shown in Figure 5. An x- or y-plane cut of the beam is

346



Fig. 5. 3-by-5 tile origami-inspired shape-changing phased array in (a) planar,
(b) y-cylinder, (c) x-cylinder, and (d) spherical configurations.

then measured, depending on which plane the beam is steered
in. EIRP patterns of beams steered in the x-plane for the
planar and y-cylinder configurations are shown in Figure 4
(a) and (b). These patterns represent only a subset of the
296 measured beam patterns. Because each of these individual
patterns contains the maximum achievable EIRP in the steering
direction, the maximum of the measured patterns in a plane
approximates the maximum achievable EIRP in that plane.

Figure 6 shows the maximum measured EIRP of a beam
steered along the x- and y- planes for each configuration. The
measured curves follow the trends expected given the theory
presented in section II. In particular, shapes with curvature in a
given plane exhibit lower maximum EIRP at broadside but less
angular sensitivity in that plane than their straight counterparts.

Figure 6 shows some non-idealities that are important to
address. Due to the asymmetry inherent in a rectangular 3-by-5
array, each configuration is longer in the x-plane than in the
y-plane. Therefore, there is a larger reduction in broadside
cross-sectional area and a larger increase in angular coverage
due to curvature in the x-plane than in the y-plane. This results
in the x-cylinder having a larger maximum broadside EIRP
than the y-cylinder. In addition, the x-cylinder has a higher
angular sensitivity in the y-plane than the y-cylinder has in
the x-plane. It is expected that the two geometries would
exhibit identical maximum broadside EIRP and complimentary
angular sensitivities in the case of a square array.

As can be seen in Figure 5, the element spacing, and thus
the total surface area, is larger in the spherical configuration
due to the change in Gaussian curvature. This increase in
total area partially compensates for the loss in broadside
cross-sectional area due to curvature, making the spherical
maximum broadside EIRP higher than the y-cylinder but lower
than the planar or x-cylinder configurations. This partial area
compensation comes at the cost of increased grating lobes.
Finally, the sphere exhibits higher angular sensitivity in the
y-plane than in the x-plane due to the rectangular asymmetry.
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Fig. 6. Maximum measured EIRP as a beam is steered in the x- and y- planes
for the 3-by-5 tile array in different geometric configurations.

V. CONCLUSION

This paper presents the design of a shape-changing phased
array operating at 2.6 GHz. The array can morph into planar,
cylindrical, and spherical configurations. Measurements of the
array show that the planar configuration has a higher maximum
EIRP at broadside, but a smaller steering range, than the curved
configurations. The reconfigurable nature of the array allows it
adapt itself to the geometry best suited for a given application.

ACKNOWLEDGMENT

The authors thank Rogers Corp. for providing substrate
materials and R. Lang, B. Abiri, D. Hodge, and Y. Li for their
help. This work was supported in part by the MURI Grant
FA9550-16-1-0566 via AFOSR.

REFERENCES

[1] P.-S. Kildal, et al., “Degrees of freedom and maximum directivity
of antennas: A bound on maximum directivity of nonsuperreactive
antennas,” IEEE Ant. Prop. Mag., vol. 59, pp. 16–25, Aug. 2017.

[2] R. F. E. Guy, “Spherical coverage from planar, conformal and volumetric
arrays,” in IEE Nat. Conf. on Ant. Prop., Mar. 1999, pp. 287–290.

[3] J. Costantine, et al., “Uhf deployable helical antennas for cubesats,”
IEEE Trans. Ant. Prop., vol. 64, pp. 3752–3759, Apr. 2016.

[4] X. Liu, et al., “A design of an origami reconfigurable qha with a foldable
reflector,” IEEE Ant. Prop. Mag., vol. 59, pp. 78–105, Aug. 2017.

[5] S. Yao and S. V. Georgakopoulos, “Origami segmented helical antenna
with switchable sense of polarization,” IEEE Access, vol. 6, pp.
4528–4536, Feb. 2018.

[6] X. Liu, et al., “Mode reconfigurable bistable spiral antenna based on
kresling origami,” in IEEE Int. Symp. on Ant. Prop., Jul. 2017, pp.
413–414.

[7] K. Fuchi, et al., “Origami tunable frequency selective surfaces,” IEEE
Ant. Wireless Prop. Lett., vol. 11, pp. 473–475, Apr. 2012.

[8] S. R. Seiler et al., “An origami inspired circularly-polarized folding patch
antenna array,” in IEEE Int. Symp. on Ant. Prop., Jul. 2018, pp. 181–182.

[9] C. S. Vaucher, et al., “A family of low-power truly modular
programmable dividers in standard 0.35-µm cmos technology,” IEEE
J. Solid-State Circuits, vol. 35, pp. 1039–1045, Jul. 2000.

[10] J. O. Jacobsen, et al., “Lamina emergent torsional (let) joint,” Mechanism
and Machine Theory, vol. 44, pp. 2098–2109, Jul. 2009.

347


	Welcome Page
	Hub Page
	Session List
	Table of Contents Entry of this Manuscript
	Brief Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Detailed Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	----------
	Abstract Book
	Abstract Card for this Manuscript
	----------
	Next Manuscript
	Preceding Manuscript
	----------
	Previous View
	----------
	Search
	----------
	No Other Manuscripts by the Authors
	----------

