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Abstract

Reconfigurable surfaces are useful in many applications. This paper 

proposes a type of reconfigurable surfaces that consist of rigid elements 

15 (tiles) connected by novel compliant joints. Depending on the actuation, 

these novel connecting joints can either operate as torsional hinges, 

which create isometric transformation (like origami folding) between 

connected tiles, or bistable translational springs, which accommodate 

metric-changing transformation between connected tiles. A specific 

20 example of a reconfigurable surface with square tile shape that can 

morph into flat, cylindrical (in two different directions), and spherical 

configurations with simple actuation is given.

Keywords: reconfigurable structures, isometric transformation, origami, 

torsional hinges, metric-changing transformation, bistability, compliant 

25 mechanisms
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1. Introduction

Reconfigurable surfaces are useful for applications that require several 

service configurations, which can lead to more powerful and compound 

devices. The application that this paper corresponds to is for an antenna 

30 that has a mechanically reconfigurable platform. Such platforms can help 

the antennas to adjust polarization [1], frequency of active antennas [2-

5] and of passive ones [6-8], and their radiation pattern [9-13] through 

active mechanical reconfiguration. A mechanically reconfigurable 

platform can also make the antenna deployable so that it is easier to be 

35 transported [14-18]. 

This paper aims at providing a mechanically reconfigurable platform 

for a novel antenna array concept introduced in [19], in which it breaks 

the trade-off between steering range, i.e., field of view, and directivity, 

i.e., fidelity in a specified direction. Traditionally, a phased array antenna 

40 with a flat configuration has high fidelity in the normal direction but a 

rather narrow field of view, and a conformal antenna on a curved surface 

can have a large field of view but relatively low fidelity [20]. This is due 

to the well-known property that directivity is proportional to cross-

sectional areas for large arrays [21, 22]. A novel concept to combine the 

45 merits of the two through mounting antenna tiles on a mechanically 

reconfigurable platform was proposed in [19]. 

Specifically, the platform needs to morph in between flat (the highest 

fidelity in the normal direction while the narrowest field of view), 

cylindrical 1 and 2 (a wider field of view in two different directions while 

50 correspondingly lower fidelity), and spherical (the widest field of view 

in all directions and the lowest fidelity) configurations, as shown in 
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Figure 1 where the spherical configuration is unknown and is proposed 

in this paper. As a result, the field of view and the directional fidelity of 

the antenna can be tuned during service through mechanical 

55 reconfiguration. Figure 1(a)-(c) involve isometric transformation, i.e., 

the distances (following the surface) between nodes are not changing, 

and Figure 1(d) involves metric-changing transformation, i.e., extensions 

of distances (following the surface) between nodes are needed. This 

paper proposes the design method for the reconfigurable surface that 

60 satisfies the requirement shown in Figure 1 while achieving easy 

manufacturability, simple actuation, and high stiffness. The detailed 

antenna concept and properties will be reported separately in [19]. 

Origami-type folding: isometric transformation

(d) Spherical

Metric-changing transformation 
(beyond origami)

unfolded

planar x-cylinder y-cylinder

sphere

?

Antenna tile

?

(a) Flat                         (b) Cylindrical 1                             (c) Cylindrical 2

65 Figure 1. Four target morphing configurations to be achieved by the mechanically 
reconfigurable surface.

Active origami can be used to generate reconfigurable surfaces. Most 

existing work is limited to isometric morphing [23-25], where only 

70 folding deformation is involved. Furthermore, these patterns are 

typically one degree-of-freedom (DOF) origami patterns, such as Miura-
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ori [26], which are most popular due to their simplicity to control. More 

sophisticated origami patterns like the waterbomb base [27] and Resch’s 

pattern [28] can provide metric-changing morphing if only tracking the 

75 overall shape (only considering certain tiles). For instance, these origami 

patterns can morph from flat to spherical configurations. However, 

complex fold patterns introduce prohibitive manufacturing challenges 

and lead to high DOF structures requiring complex actuation [29, 30]. 

Another similar technique is to use kirigami and extensible elements to 

80 achieve metric-changing transformation and reconfigure a flat plane to a 

3D surface [31-33], but the tile or nodal arrangement cannot be aligned 

as shown in Figure 1 and provide the required isometric deformation.

Alternatively, active elastomers can produce both isometric and 

metric-changing deformation. Through manipulation of the magnetic 

85 [34], electrical [35], heat [36, 37], or humidity [38] field, active 

elastomers can produce differential swelling in different directions and 

correspondingly generate designed overall deformation. However, 

compared to active origami, active elastomers generate relatively small 

curvature change with slow actuation response, and their low stiffness is 

90 problematic for maintaining shape in operation as a morphing platform.

Another method is to discretize the surface and control each part 

individually [39, 40], which can provide the most flexible 

reconfiguration comparing to active origami and active elastomers. 

However, this method is heavy, expensive, and unnecessary for 

95 applications that require only certain specified reconfigurations (such as 

those described in Figure 1).
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The solution proposed in this paper is to design the connection 

between square tiles that can work as (1) a torsional hinge to provide 

isometric transformation (origami-like folding) and (2) a bistable 

100 translational spring to accommodate metric-changing transformation that 

can only be initiated when the energy barrier (due to the bistability) is 

overcome. Global bi/multistability can simplify the actuation [41] during 

metric-changing transformation. From the literature, lamina emergent 

torsional (LET) joints [42, 43] can produce integrated torsional hinges, 

105 and snap-through slender beams [32, 44, 45] can provide bistable 

translational springs. This paper proposes the integration of the two, 

which will be referred to as linear-rotational and bistable-translational 

(LRBT) joints. In consequence, it is possible to build an isometric and 

metric-changing reconfigurable surface that has easy manufacturability 

110 (by simply cutting a plate), is easy to actuate (due to the bistability), and 

is sufficiently stiff (due to the bistability) to maintain shape. 

This method can be generalized for other tile shapes and target 

morphing configurations, which leads to wider applications. Multiple 

cameras can be mounted on different tiles of a reconfigurable platform 

115 to change the overall field of view and resolution. Manufacturing 3D 

structures from 2D material is useful for optical sensors [46, 47], 

electronics [48], and so on [49], to which the LRBT joints might be 

applicable. Besides morphing surfaces/platforms, LRBT joints might be 

used for multifunctional origami robots [50, 51] where smooth motion is 

120 provided by isometric transformation while bistable metric-changing 

transformation can be used to provide the reconfigurable for different 

functions or directional propulsion [52]. 
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This paper is laid out as follows. Section 2 presents a deterministic 

procedure for arranging square tiles on a sphere to form the spherical 

125 configuration. Section 3 introduces the design of linear-rotational and 

bistable-translational (LRBT) joints. As an example, Section 4 provides 

the design, manufacturing, and actuation of reconfigurable surfaces 

employing the square tessellation on a sphere and LRBT joints. Section 

5 concludes the paper.

130

2. Arrangement of Squares on a Sphere

Since a plane, cylinder 1, and cylinder 2 (Figure 1(a)-(c)) are all 

developable surfaces, they can all be realized by simple folding (or not 

folding) of an initially planar shape. Achieving a spherical configuration 

135 from an initially planar arrangement of square tiles is more challenging, 

though. Because a sphere has nonzero Gaussian curvature, the 

deformation from the plane to the sphere must be non-isometric, or, in 

simpler terms, the spacing between adjacent tile pairs must vary from tile 

to tile, as illustrated in Figure 2. 
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140

No-shear condition

Joined-corners condition

Rectangle opening

Trapezoid opening

Triangle opening

Figure 2. Arrangement of square tiles on a sphere to achieve the fourth target 
configuration (spherical).

145 We assume a sphere of radius R and use unit square tiles. Define

𝑥0 =
1
2 ,  𝑧0 = 𝑅2 ― (1

2)2

.
( 1 )

Since the tiles form a square grid, we index the tiles on two indices (i, j), 

with the (0, 0)th tile located at the “North Pole” of the sphere. For each 

tile, we define the four corner coordinates in clockwise order, and 

distinguish them by adding a third index , as illustrated in 𝑘 ∈ [1,…,4]

150 Figure 3(a). For the (0, 0)th tile, the four vertices are

𝐏0,0,1 = (𝑥0, 𝑥0, 𝑧0), ( 2 )

𝐏0,0,2 = ( ―𝑥0, 𝑥0, 𝑧0), ( 3 )

𝐏0,0,3 = ( ―𝑥0, ― 𝑥0, 𝑧0), ( 4 )



8

.𝐏0,0,4 = (𝑥0, ―𝑥0, 𝑧0) ( 5 )

We can construct a local frame of unit vector  for each (𝐱𝑖,𝑗, 𝐲𝑖,𝑗, 𝐳𝑖,𝑗)

tile, where  points from the center of the tile to the first edge and is 𝐱𝑖,𝑗

perpendicular to it;  points from the center of the tile to the second 𝐲𝑖,𝑗

edge and is perpendicular to it; and  is normal to the tile. For the (0, 𝐳𝑖,𝑗

155 0)th tile, the local frame is

. 𝐱 = (1, 0, 0),   𝐲 = (0, 1, 0),   𝐳 = (0, 0, 1) ( 6 )

A tile anywhere on the sphere can be parameterized on three angles that 

describe a transformation of the tile from the position of the (0, 0)th tile:

 , an initial rotation of the tile about the z-axis;𝜓𝑖,𝑗

 , an azimuthal rotation of the tile from the North Pole down to 𝜃𝑖,𝑗

160 a lower latitude;

 , an axial rotation of the tile about the z-axis to a different 𝜙𝑖,𝑗

longitude.

We define the transformation of a vector  in terms of arbitrary 𝐪𝑖,𝑗

 by(𝜃𝑖,𝑗,𝜙𝑖,𝑗,𝜓𝑖,𝑗)

𝐚𝑖,𝑗 = (cos(𝜙 +
𝜋
2), sin(𝜙 +

𝜋
2), 0),

( 7 )

𝐧𝑖,𝑗 = (sin 𝜃 cos 𝜙, sin 𝜃 sin 𝜙, cos 𝜃), ( 8 )

 𝐪𝑖,𝑗 = 𝐑(𝜙,𝐧) ∙ 𝐑(𝜃,𝐚) ∙ 𝐪0,0, ( 9 )
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165 where  is the 3D rotation through angle  about axis .  can 𝐑(𝛼,𝐮) 𝛼 𝐮 𝐪𝑖,𝑗

represent either a vertex corner vector  or a local frame vector , 𝐏𝑖,𝑗,𝑘 𝐱𝑖,𝑗 𝐲𝑖,𝑗

, or .𝐳𝑖,𝑗

We can simplify the problem by assuming mirror symmetry along the 

reflection axes of a square, in which case we only need to solve for a 

170 subset of the tiles. If we specify a  array, we need (2𝑛 + 1) × (2𝑛 + 1)

to solve only for the tiles within indices , as 𝑖 = 0,...,𝑛,  𝑗 = 0,...,𝑖

illustrated in Figure 3. 

We set up the problem of finding tiles positions as a constrained 

optimization, where the variables being constrained are the three angles 

175 for each tile (via the tile corners parameterized on them), and the 

constraints are of several types:

 Joined corners. Because we want the largest possible fill factor, 

we want no excess gaps between tiles. We achieve this by 

choosing that the corners of adjacent tiles along the outside ring 

180 are joined.

 No shear. In order to reduce the number of design variables, we 

adopt the no-shear condition on adjacent tiles.

For the joined-corners constraint, a simple constraint that specifies 

joining would be to require that the distance between the pair of corners 

185 to be joined be set equal to zero. However, this is numerically fragile; it 

is equivalent to finding the zero of a function by minimizing its absolute 

value. Instead, we should like to find a multidimensional function whose 

value goes through zero smoothly.

We achieve this by expressing the coordinates of one of the corners to 

190 be joined in the local frame of the tile of the other coordinate, and then 
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requiring that the local x and y coordinates match. (There is no need to 

match the z coordinates because the vertices are already on the surface 

of the sphere.) Thus, if we denote the two corners to be forced to join by 

 and , we have two equality constraints to enforce point 𝐏𝑖1,𝑗1,𝑘1 𝐏𝑖2,𝑗2,𝑘2

195 coincidence:

, (𝐏𝑖1,𝑗1,𝑘1 ― 𝐏𝑖2,𝑗2,𝑘2) ∙ 𝐱𝑖1,𝑗1 = 𝟎 ( 10 )

 (𝐏𝑖1,𝑗1,𝑘1 ― 𝐏𝑖2,𝑗2,𝑘2) ∙ 𝐲𝑖1,𝑗1 = 𝟎. ( 11 )

The no-shear condition arises from the preference to reduce the 

number of design variables (for arranging squares on a sphere) and 

regulate the relative motion between square tiles (so that shapes of 

opening are easier to categorize). If we denote the vertices of the two 

200 tiles as , , , and , then the no-shear condition for that particular 𝐏A 𝐏B 𝐏C 𝐏D

pair is simply

.‖𝐏A ― 𝐏C‖ ― ‖𝐏B ― 𝐏D‖ = 0 ( 12 )

The joined-corners and no-shear conditions form the constraints of the 

optimization.

For the figure of merit, we use the goal that we would like the tiles to 

205 be as evenly spaced as possible; a way of achieving this is to choose the 

root mean square (RMS) sum of the distances between adjacent pairs of 

vertices to be zero (since using RMS sum of spacing of elements 

confined to a finite region will, all else being equal, drive the spacing to 

be roughly equivalent). In fact, as it turns out, other constraints of the 

210 spherical geometry force distinctly unequal spacing, but choosing the 
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RMS goal has the effect of “soaking up” any excess degrees of freedom 

in the system, leading to a definite (numerical) solution for the positions.

We optimize over the angle variables  for the  values (𝜃𝑖,𝑗,𝜙𝑖,𝑗,𝜓𝑖,𝑗) (𝑖, 𝑗)

of the tiles in the minimal set, using symmetry to find the coordinates for 

215 any other tile vertices involved in the constraints or figure of merit. Note 

that the positions of the joined corners are not placed: they are 

determined from the solution of the system of equations. There is no 

guarantee of a solution; for any given number of tiles, there is a minimum 

sphere size for which a solution can be found. (This is obvious from the 

220 fact that at some point, the area of the sphere is going to be less than the 

area of the set of tiles.)

(a) Labeling of the four vertices of a tile

225

(b) Schematic of a  array of tiles with indices ; only the (2𝑛 + 1) × (2𝑛 + 1) (𝑖, 𝑗)
shaded tiles have independent variables to be solved for

Figure 3. Labeling of vertices and tiles.
230
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|PAPC|=|PBPD|

PA

PB

PD

PC

Square tile 1

Square tile 2

Figure 4. No-shear condition between adjacent square tiles to reduce design 
parameters.

235 We parameterize each tile in terms of three variables: the altitude and 

azimuth of the centroid of the tile and the relative rotation of the tile about 

its centroid. An overall design parameter is the sphere radius (we assume 

unit square tiles). From those parameters, we can compute the four 

vertices of each tile; from the vertices, we can construct our FOM and 

240 the no-shear and joined-corner condition constraint equations. We then 

solve this system of equations (using Mathematica) to find the tile 

arrangement shown in Figure 2, and this method is used in the rest of this 

paper.

The resultant openings between square tiles can be categorized as 

245 rectangle, triangle, and trapezoid shapes as shown in Figure 2. Bistable-

translational elements were then designed accordingly, as described in 

the next section.



13

3. Introduction of Linear-Rotational and Bistable-Translational 

250 (LRBT) Joints

In this section, joints that connect square tiles that can in one hand 

provide rotation along the edge of squares for isometric transformation, 

as shown in Figure 1(a)-(c), and in the other hand can provide translation 

between squares for metric-changing transformation, as shown in Figure 

255 2, are introduced. They are categorized into rectangle, triangle, and 

trapezoid openings based on their target open shapes.

3.1 The Rectangle Opening LRBT Joints

3.1.1 Geometry and Deformation

Consider two plates that are connected by four slightly curved elastic 

260 beams in 2D, as shown in Figure 5(a), where end connections of those 

beams have thinner profiles so that rotation can occur easily. The out of 

plane thickness of the material t = 3.175 mm. The material used is 

polypropylene copolymer. Tensile tests were performed, and the material 

stress-strain curve is given in Figure 6. The properties of the 

265 polypropylene copolymer are as follows: density = 10-3 g/mm3, Young’s 

modulus = 322 MPa, Poisson’s ratio = 0.3, yield stress = 24 MPa, yield 

strain εy = 7.5%, and the elongation before break is 650%.

3.1.1.1 Bistability in Translation

270 The in-plane translational (extensional and compressional) behavior of 

LRBT hinges was modeled in Abaqus/Explicit [53] using 85736 C3D8R 

elements. A convergence test of mesh density was conducted, and the 
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kinetic energy and artificial energy of all simulations were well below 

5% of the total energy. Linear elasticity and plasticity (input the curve in 

275 Figure 6 into Abaqus) were considered in the material model. Viscosity 

of the material was not included because simple material tests (without 

varying and recording strain rates) were employed as the numerical 

model is to only capture the main feature (the LRBT effect) of the joint. 

In the simulation, the left side of the structure was clamped, and a 

280 horizontal displacement was imposed to the right side of the structure. 

The prescribed displacement was 11 mm applied over a 0.5 s interval. 

This is noted as stage 1, in which the structure was pulled open as shown 

in Figure 5(b). The displacement was then reversed back to 0 mm over 

0.5 s; this is noted as stage 2. In these two stages, plastic deformation 

285 only occurred in the joining area to form living hinges while the rest of 

the beams remained elastic, as shown in Figure 5(c). 

The same displacement was imposed experimentally by an Instron 

machine with a speed of 5.5 mm/min. The experimental deformation is 

shown in Figure 5(b). Three test samples were manufactured by laser 

290 cutting a 3.175 mm thick polypropylene sheet. 
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30

wtol=60

d=1.5

w=10

2

7

1.2

L=10.4

 Unit: mm
(a)

295 (b)

(Avg: 75%)
PEEQ

+0.000e+00

+1.063e+00
+1.159e+00

(Avg: 75%)
PEEQ

+0.000e+00

+1.063e+00
+1.159e+00

  
 (c) 

Figure 5. A rectangle LRBT element: (a) schematic drawing with dimensions, (b) 
deformation given in numerical simulation and experiment with respective 

300 displacements of 0 mm, 6.5 mm, 11 mm, 6.5 mm, and 0 mm, and (c) plastic 
deformation in the connection hinges that forms living hinges.
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Figure 6. The uniaxial stress-strain curve of polypropylene copolymer.

305 Energy and reaction force plots of this process are given in Figure 7. 

As shown in Figure 6, the material is softened in the plastic region. This 

is reflected in Figure 7, where the plastic energy is flatter in stage 2 when 

the displacement is decreasing. This indicates that localized and soft 

plastic living hinges are formed in the end connections of those beams 

310 (noted in Figure 5(c)). In consequence, two stable states can be observed 

in stage 2 according to internal energy, elastic energy, and reaction force. 

The slight deviation of stable positions between internal energy (or 

reaction force) and elastic energy is due to the existence of plastic hinges 

(residual moments). As a result, the structure (after the formation of 

315 plastic living hinges) is bi-stable in the translational deformation. Both 

stable configurations occur when the elastic beams are undeformed (with 

slight drifting due to plastic hinges). Plots of numerical and experimental 

reaction forces in Figure 7 show almost identical stable positions in stage 

2. Experimental reaction forces of the three samples show good 

320 consistency as noted by the error bars. However, they have overall 

different magnitude to the numerical reaction force in Figure 7(b). The 

difference is significant in stage 1 where plastic living hinges are in the 
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process of forming which is not well captured by the simulation, while 

stage 2 shows a closer match. The experimental reaction force at the 

325 displacement of 11 mm is significantly the highest, which indicates the 

beams are practically shorter than the design due to manufacturing 

inaccuracy and the effect of beam width. As a result, the beams are in 

tension at the displacement of 11 mm in experiments, and the plot shows 

a sharp increase of reaction force. Additionally, the lack of consideration 

330 of viscous effects in the numerical model can also contribute to this 

deviation.

Cyclic loading (with 4 cycles in total and the same speed) was tested 

experimentally and has shown that the sample is repeatedly bistable after 

the first half of the initial cycle where plastic hinges or living hinges 

335 (noted in Figure 5(c)) are formed. Differences between the reaction 

forces of stage 1 and 2 were mainly caused by viscoelasticity.

Elastic energy during the stage 2 in the numerical simulation captures 

the inherent bistability better than the internal energy which includes the 

plastic energy that shifts the stable positions differently depending on the 

340 loading history/direction. In consequence, elastic energy is used in later 

sections to characterize the translational bistability of other LRBT joints.
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Figure 7. Plots of energy (from simulation) and reaction force (from simulation and 
experiments) to the displacement of stage 1 (pulling from 0 mm to 11 mm) and stage 

345 2 (compressing from 11 mm to 0 mm) of a rectangle LRBT joint.
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Figure 8. Plots of the experimental reaction force to the displacement in a cyclic 
loading (between 0 mm and 11 mm displacement) of a rectangle LRBT joint.

350 3.1.1.2 Linear Elastic in Rotation

Consider the same structure given in Figure 5(a). Now, pure bending 

is applied in the numerical simulation, where the plate on the left side is 

clamped, and the rotation is applied to the plate on the right side, as 

shown in Figure 9. The total step time is 0.5 s. The hinge is linear elastic 

355 until the rotation reaches 60°, where plasticity starts to occur, as shown 

in Figure 9(d). This result indicates that this structure (if made of linear 

elastic material) shall have linear elastic bending behavior. 

Experiments of 3 samples were conducted using a pure bending 

machine (with a accuracy of 8.9 Nmm) that has been introduced and used 

360 in [54, 55]. The experimental setup is shown in Figure 10(a), 

experimental bending deformation with a rotation of 40° is given in 
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Figure 10(b), and plots of reaction moments of 3 samples are presented 

in Figure 10(c). After the experiment, sample 2 and 3 slowly recovered 

to the flat configuration while sample 1 recovered to a residual rotation 

365 of 7°. This recovery together with plots indicates that the structure is 

viscoelastic within a rotation of 25°. 

              
     (a) Rotation 0°            (b) Rotation 27°            (c) Rotation 54°

370
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(d) Moment to rotation plot

Figure 9. Simulated bending deformation of a rectangle LRBT element and its 
moment to rotation plot.

375
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Figure 10. Bending experiments of 3 rectangle LRBT samples: (a) the experimental 
setup; (b) deformation with a rotation of 40°; and (c) moment to rotation plots.

This linear elastic behavior shows that this rectangle LRBT joint 

385 works similarly to a LET joint [42]. (A LET joint is a torsional hinge 

with integrated beams that act as torsional springs whose stiffness is 

designable and governed by geometric parameters of the beams.) 

Numerical simulation with the same settings (mesh density, loading 
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speed, etc.) is used in Section 3.1.2, 3.2, and 3.3 and to characterize the 

390 bending behavior of other LRBT joints with a linear elastic material 

assignment.

The hinge-rotation does not remove the translational bistability and 

does not introduce parasitic translational deformation. This is observed 

in experiments and simulations, where the hinge stayed closed stably 

395 during hinge-rotation. Translation of the hinge is associated with bending 

deformation of beams, while rotation of the hinge is associated with 

torsional deformation of beams. Intuitively, the translational bistability 

is introduced by the two symmetric configurations (open and closed in 

translation) where beams are almost “bending-free”. The introduction of 

400 hinge-rotation does not break that symmetry so the bistability remains. 

Hinge-rotation creates torsional deformation in beams, which has a 

negligible translational projection. As a consequence, parasitic 

translational deformation is not expected during bending.

Now we have presented a basic element that can act as a bistable 

405 translational spring or a linear torsional hinge depending on the loading. 

These two behaviors (translating and bending) are well separated by the 

energy barrier shown in the stage 2 of Figure 7.

3.1.2 Parametric Study

To develop design guidelines for LRBT hinges, the following design 

410 requirements are proposed and need to be satisfied: (a) beams are not 

plastically deformed; (b) reasonable stiffness for the bistability which is 

realized by introducing small initial curvature to beams; (c) the 

translational deformation (snap-through of beams) remains in 2D, which 
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is achieved by designing beam widths significantly smaller than the 

415 material thickness. A rough analytical model is used to prevent plasticity 

in the beams during translation (except at the ends of the beams). 

Assuming the beam deforms into a circular arch, geometric parameters 

w, L (taken as the distance between end points), and d noted in Figure 5 

need to satisfy the following relationships for it to stay within the elastic 

420 region (to satisfy requirement (a)). 

,sin (𝜃
2) =

𝑤
2𝑅

( 13 )

,𝐿 = 𝑅𝜃 ( 14 )

,𝑅 >
𝑑

2𝜀𝑦
( 15 )

where R and θ are the radius and the central angle of the deformed beam, 

respectively. This model provides a rule of thumb for design, and has not 

considered viscosity and used simple engineering strain as the indication 

425 of yielding. For the material thickness t = 3.175 mm used in this study, a 

beam width d = 1.5 mm (to satisfy requirement (c)) and total width wtol 

= 60 mm (to match the antenna tile size) as noted in Figure 5(a) are 

chosen for all LRBT designs in this paper.

Drawing procedures for generating rectangle LRBT joints with 

430 specified openings are given in Figure 24 in Appendix A. Designs of 

three different target rectangle openings gr, which are 10 mm, 17 mm, 

and 32 mm are provided in Table 1 according to the principle introduced 

in Figure 24. Similar designs that are used for the 17 mm and 32 mm 

openings are previously introduced in [56], which have several pairs of 
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435 beams in the transverse direction of the hinge to eliminate “parasitic” 

kinematics illustrated in [57]. All three design requirements are satisfied.

Two samples of each LRBT hinge design were manufactured by laser 

cutter, and the averaged stable opening sizes are given in Table 1. 

Manufactured samples are presented in Figure 11, which shows the 

440 translational deformation (stable by elastic strain energy) and rotational 

deformation (held at a fixed rotation angle by tape). They open to 

approximately the designed size and rotate along the edge of two plates. 

Slight deviations from the target openings are mainly caused by (1) the 

occurrence of the plastic hinges is not at ends of beams so that effective 

445 beam lengths are smaller and (2) deformation of elastic beams due to 

residual moment at the plastic connection hinges at ends of beams. 

Drawings with detailed dimensions are given in the supplementary 

material. The “kerf” of the laser cutting is 0.2 mm and has been taken 

into account. Translational (stage 2) and bending plots from numerical 

450 simulations are given in Table 1, which shows the linear-rotational and 

bistable-translational behavior for all three designs. Local fluctuations in 

curves are due to contact between boundaries during gap closing. Stage 

2 (in Figure 7) of their translational behavior (compression) is plotted, so 

the elastic energy is not zero when the translational displacement is zero 

455 due to the residual moment in the plastic living hinges.
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Table 1 Three rectangle LRBT joints.

Target 

Opening gr

10 mm 17 mm 32 mm

Design

Opening 

size exp. 

(mm)
10.10 16.31 30.31
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Avg. 10.10 mm Avg. 16.31 mm Avg. 30.31 mm
Rotation:

Translation:

Figure 11. Three rectangle LRBT joints and their translational and rotational 
deformations.

465 3.2 The Triangle LRBT Joints

As shown in Section 2, some target hinge openings are triangle shapes. 

Drawing procedures for generating triangle LRBT joints with specified 

openings are given in Figure 25 in Appendix A. The bottom corners of 

the plates must be connected while still allowing in- and out-of-plane 

470 rotation. This can be achieved by connecting the bottom corners with 

cutout beams as shown in Figure 12 and Figure 25(c), producing a 

compliant pin-joint connection. Three designs are given in Table 2 and 

Figure 12. Plots from numerical simulations show that they are linear-

rotational and bistable-translational.
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475

Table 2 Three triangle LRBT joints.

Target 

Opening  

gt

9.8 mm 14.1 mm 20.5 mm

Design

Opening 

size exp. 

(mm)
10.34 13.98 19.56

Avg. error 5.51% -0.89% -4.59%
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Avg. 10.34 mm Avg. 13.98 mm Avg. 19.56 mm
Translation:

Rotation:

480
Figure 12. Three triangle LRBT joints and their translational and rotational 

deformations.

3.3 The Trapezoid LRBT Joints

Some target openings take trapezoidal shapes. Drawing procedures of 

485 generating trapezoid LRBT joints with specified openings are given in 

Figure 26 and Figure 27 in Appendix A. Designs with different openings 

are presented in Table 3 and Figure 13. A maximum error of 10.84% is 

observed. The designs are linear-rotational and bistable-translational as 

observed in plots of numerical simulations, where the translational 

490 displacement is measured as the average of g1 and g2.
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Table 3 Five trapezoidal LRBT joints.

Target 
Opening 
g1 and g2

14.3 mm
9.8 mm

16.7 mm
15.1 mm

23.5 mm
14.1 mm

Design

Opening 
size exp. 

(mm)

13.97
9.88

15.70
15.08

21.37
13.51

Avg. error -2.34%
0.77%

-6.02%
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-9.06%
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29.7 mm
25.5 mm
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21.2 mm
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size exp. 

(mm)

28.03
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495

500

505

Figure 13. Five trapezoidal LRBT joints and their translational and rotational 
deformations.

This section has presented designs of LRBT joints that can provide the 

510 specified opening (rectangular, triangular, or trapezoidal shape) and 

verified that they are linear elastic in rotation and bistable in translation. 

4. Integration into reconfigurable surfaces

Two square (tile) arrangements, 5 by 5 and 7 by 7, were produced 

using the technique introduced in Section 2. Corresponding LRBT joints 

515 were designed and put into arrays to form the 2D cutting patterns. A laser 

cutter was used to cut the structures from 3.175 mm thick polypropylene 

copolymer sheets. An actuation setup was developed to morph the 

prototype between all 4 target configurations using 3 actuators (2 cables 

and 1 slider). To characterize the target shapes of the prototype, 3D 

Avg. 13.97 mm

Avg. 9.88 mm

Avg. 15.70 mm

Avg. 15.08 mm

Avg. 21.37 mm

Avg. 13.51 mm

Avg. 28.03 mm

Avg. 22.74 mm

Avg. 27.96 mm

Avg. 22.43 mm
Rotation:

Translation:
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520 scanning was used, showing close agreement with the ideal target shapes. 

High resolution pictures and actuation videos can be found in the 

supplementary material.

4.1 The 5 by 5 Pattern

525 4.1.1 Arrangement of Square Tiles on a Sphere and the 2D Cutting 

Pattern

A 5 by 5 pattern with square size of 60 mm and radius of 168 mm is 

generated and shown in Figure 14 where different square tiles are marked 

with numbers. Openings between each pair of square tiles are given in 

530 Table 4 and corresponding joints are chosen from Table 1, Table 2, and 

Table 3. A 2D cutting pattern can be generated as shown in Figure 15 

where there are 4 holes at corners of each square for mounting antenna 

tiles. The widths of some hinge openings are approximately the thickness 

of the material, so they are jointed simply by torsional beams (LET joints) 

535 as almost no translational movement is needed. Redundant material is 

cut away to save weight. The outcome is one continuous structure.
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Figure 14. Arrangement of 5 by 5 square tiles with 60 mm width on a sphere with 
radius 168 mm, and there are 6 different positions of square tiles (based on symmetry) 

540 that are marked by numbers.

Table 4 Opening sizes between adjacent square tiles measured from the 
arrangement of squares in Figure 14.

545

Pair of Square Tiles Opening Type Opening Size (mm)

1-2  Rectangle 32.5

2-3 Rectangle 2.9

2-4 Trapezoidal g1=30.1

g2= 21.2

3-5 Triangle 20.5

4-5 Trapezoidal g1=3.8

g2= 3.0 

5-6 Triangle 3.7
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Figure 15. The 5 by 5 cutting pattern of the resultant structure that can reconfigure 
to all 4 target configurations presented in Figure 1.

550

4.1.2 Manufacturing, Actuation, and Shape Measurement

It took about 2 hours to cut the structure, which produced the 

reconfigurable surface shown in Figure 16. The structure in the flat 

configuration is like an elastic plate which can be folded along the edges 

555 of square tiles. It is stable by internal energy at flat and spherical 

configurations (Figure 16(a)(c)) and can be stable at cylindrical 

configurations by actuation (which is taped at the back of the structure in 

Figure 16(b)). The out-of-plane stiffness of the structure at flat 

configuration is provided by the rigid plate (that it conforms to at the 
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560 back) and contacts introduced by antenna tiles (to be installed at the 

front). Prestress is created at cylindrical and spherical configurations due 

to bending deformation of all LRBT joints, which increases the out-of-

plane stiffness of the structure. Thicker substrates introduce larger 

prestress and correspondingly larger stiffness.

565 Actuation setup was developed and shown in Figure 17. There are 

three actuators, including 2 cables and 1 slider. A rigid plate holding 4 

pulleys supports the two cables. The plate can slide along a rigid rod (a 

T-slotted framing rail). The center square tile of the reconfigurable 

surface is connected to the top of the rigid rod, and the bottom of the rod 

570 is clamped to the foundation. 
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(a)

(b)

(c)

Figure 16. The 5 by 5 reconfigurable surface in (a) flat configuration (stable), (b) 
cylindrical configuration (held stable by tape), and (c) spherical configuration (stable). 
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Figure 17. The actuation setup that consists of 2 cables and 1 slider in (a) side view 
and (b) bottom view.

Actuation is shown in Figure 18. Here, the structure morphs in 

580 between 4 target configurations by actuating 2 cables and 1 slider. In the 

flat configuration (Figure 18(a)), the structure conformed to the shape of 

the rigid flat plate. When lowering the rigid plate and pulling 1 cable (and 

holding it), cylindrical configurations (Figure 18(c)(d)) could be 

achieved where LRBT joints worked as elastic torsional hinges. While 

585 pulling 2 cables further, all LRBT joints were snapped open, forming the 

spherical configuration (Figure 18(f)). In this configuration, the structure 



37

was stable by itself (the cables did not need to held). Then, sliding the 

rigid plate up, the structure was compressed between the top of the rigid 

rod and the top surface of the rigid plate, which closed all the LRBT 

590 joints and the structured snapped to the flat configuration (Figure 

18(g)(h)(i)). A video of the actuation sequence is provided in the 

supplementary material.

595

600

605

Figure 18. Morphing in between 4 target configurations by actuating 2 cables and 1 
slider.

The spherical shape was measured by 3D scanning and was compared 

610 to the target shape, which is shown in Figure 19. Four corners of each 

square tile, which are circled in red for one square tile in Figure 16(c), 

were regarded as reference points and measured. As shown in Figure 19, 

the experimental configuration is slightly longer in y direction and 

Flat

Slide the plate down

Cylindrical 1

Cylindrical 2 Spherical

Flat

Pull cable 2

Pull cable 1 Pull cable 1 
further

Pull cable 2 
further

Slide the plate up Slide the plate up further

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)
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shorter in x direction. Four corners of the structure are slightly bulged 

615 out compared to the target shape. The maximum deviation (in terms of 

the distance) from the target coordinate is 14.04 mm, and the averaged 

deviation is 6.22 mm. The width of the ideal structure is 300 mm, giving 

a maximum relative error of 4.7% and an averaged relative error of 2.1%. 

The 3D scanned cylindrical configuration is given in Figure 20 where 

620 good uniformity is observed. The experimental shape can be influenced 

by the residual stress in the elastic beams, self-weight, plasticity induced 

during actuation, and manufacturing imperfections.
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               (a)                                                                             (b)

625 Figure 19. Comparison of 3D scanned spherical shape and the target shape in (a) 
top view and (b) side view.

Figure 20. The 3D scanned cylindrical shape is represented by blue dots, and red 
630 ruling lines are to help discern the shape.
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4.2 The 7 by 7 Pattern

The generality of the LRBT design process is demonstrated by 

constructing a structure composed of a 7 by 7 array of tiles. Figure 21 

shows the 7 by 7 square arrangement on a sphere with tile width of 60 

635 mm and radius of 240 mm. Corresponding LRBT joints can be designed 

and placed into a 2D array as shown in Figure 22(a). Cylindrical and 

spherical configurations are presented in Figure 22(b) and (c) which 

visually show good consistency.

640

Figure 21. Arrangement of 7 by 7 squares on a sphere.
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Figure 22. The 7 by 7 reconfigurable surface in (a) flat, (b) cylindrical, and (c) 
645 spherical configurations.

5. Conclusion

This paper has proposed a new class of reconfigurable surfaces 

consisting of rigid elements (tiles) connected by novel compliant joints. 

These joints can work as torsional hinges that enable isometric 
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650 transformation, such as origami folding, between connected rigid pieces. 

When actuated specifically, these joints can work as bistable 

translational springs that bring metric-changing transformation between 

connected rigid pieces. When the bistability of joints is designed 

accordingly, desired metric-changing configurations, such as specified 

655 spherical shapes, can be achieved with simple actuation. A specific 

example of a reconfigurable surface with square tiles that can morph 

between flat, cylindrical (in two different directions), and spherical 

configurations is presented. One advantage of this method is its 

convenience in manufacturing. Another merit is its designable (and high) 

660 stiffness at all target configurations due to bistability and prestress in the 

joints. The prestress comes from the bending deformation of LRBT joints 

in cylindrical and spherical joints, and thicker substrates introduce larger 

prestress and correspondingly larger stiffness. 

Theoretical aspects of this research are left for future work. Since 

665 many bistable elements are employed in a 2D array, a number of 

bifurcations and intermediate stable states can be created [58]. To design 

a reliable reconfigurable structure and the corresponding actuation 

scheme, a theoretical framework that connects the design parameters to 

the energy landscape of the structure is needed. The framework (similar 

670 to the one given in [41]) shall unveil the interaction among kinematic 

constraints, energy profile of each joint, and the overall energy 

landscape.

Further research could also explore the possibility of removing the no-

shear condition in Section 2 to achieve more uniform and compact 

675 arrangements of tiles, as shown in Figure 27. Detailed characterization 
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of mechanical properties of the reconfigurable surface would also be of 

interest. 

This concept can be applied to different tile shapes and different target 

configurations. The general steps are the same with the outline of this 

680 paper: (1) identify the compact tile arrangements in 2D where origami-

like folding is allowed between tiles to generate isometric 

transformation; (2) arrange the tiles on a 3D target surface with 

reasonable adjacency; (3) measure gap types and sizes in between tiles 

on that 3D surface; (4) design LRBT joints accordingly for all the gaps; 

685 (5) assemble LRBT joints and tiles into a continuous 2D structure that 

can reconfigure to the 3D target shape through metric-changing 

transformation. 

Other features, such as “bistable-rotational” elements [59], can be 

integrated. Other applications, such as wearable electronics and robotics, 

690 can be explored as well. 

Figure 23. A LRBT joint that has translation containing “shear” along the hinge 
direction. 
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Appendix A

705 Design with A Specified Rectangle Opening

As shown in Section 2, a target opening size is given, and the 

corresponding LRBT joint design needs to be generated. This procedure 

is demonstrated in this subsection for rectangular openings. Another 

requirement (other than matching the specified translational opening) is 

710 that the center of rotation during bending occurs at the boundary of two 

connected plates. An example of generating the design shown in Figure 

5(a) is given. The red rectangle in Figure 24(a) is the target rectangle 

opening where the red dotted line is the vertical bisector of AD. The blue 

dotted line is the vertical bisector of AC, and it is the center of rotation 

715 during bending. With specified margins due to connecting and mounting 

requirements (of antenna tiles), the position of beams can be determined. 

A radius of 30 mm is added to beams reduce the force required to open 

the hinge. Four holes are for mounting antenna tiles (later). The resultant 
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structure is expected to (1) open to the size of the red rectangle when 

720 pulled laterally and (2) to rotate along the blue dotted line when bent.

10

Margin

Margin

Margin

Margin

Margin

2.5

R30

60

A B C D

Unit: mm
                      (a)                                  (b)                             (c)

Figure 24. The drawing procedure of a LRBT joint to match a given rectangle 
725 opening and center of rotation.

Design with A Specified Triangle Opening

In this subsection, procedures for generating LRBT joint designs that 

open into target triangle shapes are provided. In Figure 25, the red 

730 triangle is the target translational opening, and the blue dotted line is the 

center of rotation during bending. Dimensions of margins (≥ 2 mm) are 

chosen. A 20° angle between the beam and the blue dotted line is chosen 

to satisfy Eqs. ( 13 )( 14 )( 15 ). The bottom part of the structure connects 

the two plates with three beams. With the help of contacts, the bottom 

735 part equivalently produces a compliant pin-joint connection. Three 

designs produced according to this drawing procedure (Figure 25) are 
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given in Table 2 and Figure 12. Curvature is not added for gt=20.5 mm 

as the beams are slender. 
14.1

Margin

Margin

20°

20°

60

13.5°

3.4°

 Unit: mm
740                            (a)                                   (b)                         (c)

Figure 25. The drawing procedure of a LTBT joint to match a specified triangle 
opening and the center of rotation.

Design with A Specified Trapezoidal Opening

745 Some target openings take trapezoidal shapes and this subsection 

introduces a procedure to generate such openings. When the opening is 

small, the drawing procedure given in Figure 26 is employed, where the 

red trapezoid is the target opening. The blue dotted line is the vertical 

bisector of AB and is the center of rotation during bending. 
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Figure 26. The drawing procedure of a LTBT joint to match a given small 
trapezoidal opening and center of rotation.

755

When the opening is large, where Eq. ( 13 )( 14 )( 15 ) cannot be 

satisfied using the pattern shown in Figure 26, the drawing scheme 

shown in Figure 27 is employed. Line segment AB has a length of 4 mm 

and is perpendicular to the blue dotted line. |AC| = |A’C| defines A’. |AB| 

760 = |A’B’| and BAE = B’A’F give B’. DG is the vertical bisector of line ∠ ∠

segment B’B, which gives point D. As a result, |BD| = |B’D| and BD is 

the position of an elastic beam. Similarly, the positions of other elastic 

beams can be worked out, leading to non-symmetric beams.
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Figure 27. The drawing procedure of a LTBT joint to match a given large 

trapezoidal opening and center of rotation.
770

Supplementary material

Supplementary material includes all the drawings in a dxf file and 

slides that contain pictures and videos of prototypes.
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